Development and Validation of Noninvasive MRI‐Based Signature for Preoperative Prediction of Early Recurrence in Perihilar Cholangiocarcinoma

医学 列线图 四分位间距 单变量 放射科 逻辑回归 单变量分析 麦克内马尔试验 精确检验 多元分析 曼惠特尼U检验 阶段(地层学) 多元统计 接收机工作特性 逐步回归 Lasso(编程语言) 内科学 计算机科学 统计 古生物学 万维网 生物 数学
作者
Jian Zhao,Wei Zhang,Yuan‐Yi Zhu,Hao‐Yu Zheng,Li Xu,Jun Zhang,Si‐Yun Liu,Fu‐Yu Li,Bin Song
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:55 (3): 787-802 被引量:20
标识
DOI:10.1002/jmri.27846
摘要

Background Cholangiocarcinoma is a type of hepatobiliary tumor. For perihilar cholangiocarcinoma (pCCA), patients who experience early recurrence (ER) have a poor prognosis. Preoperative accurate prediction of postoperative ER can avoid unnecessary operation; however, prediction is challenging. Purpose To develop a novel signature based on clinical and/or MRI radiomics features of pCCA to preoperatively predict ER. Study Type Retrospective. Population One hundred eighty‐four patients (median age, 61.0 years; interquartile range: 53.0–66.8 years) including 115 men and 69 women. Field Strength/Sequence A 1.5 T; volumetric interpolated breath‐hold examination ( VIBE ) sequence. Assessment The models were developed from the training set (128 patients) and validated in a separate testing set (56 patients). The contrast‐enhanced arterial and portal vein phase MR images of hepatobiliary system were used for extracting radiomics features. The correlation analysis, least absolute shrinkage and selection operator (LASSO) logistic regression (LR), backward stepwise LR were mainly used for radiomics feature selection and modeling (Model radiomic ). The univariate and multivariate backward stepwise LR were used for preoperative clinical predictors selection and modeling (Model clinic ). The radiomics and preoperative clinical predictors were combined by multivariate LR method to construct clinic‐radiomics nomogram (Model combine ). Statistical Tests Chi‐squared ( χ 2 ) test or Fisher's exact test, Mann–Whitney U ‐test or t ‐test, Delong test. Two tailed P < 0.05 was considered statistically significant. Results Based on the comparison of area under the curves (AUC) using Delong test, Model clinic and Model combine had significantly better performance than Model radiomic and tumor‐node‐metastasis (TNM) system in training set. In the testing set, both Model clinic and Model combine had significantly better performance than TNM system, whereas only Model combine was significantly superior to Model radiomic . However, the AUC values were not significantly different between Model clinic and Model combine ( P = 0.156 for training set and P = 0.439 for testing set). Data Conclusion A noninvasive model combining the MRI‐based radiomics signature and clinical variables is potential to preoperatively predict ER for pCCA. Level of Evidence 3 Technical Efficacy Stage 4
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
绵马紫萁发布了新的文献求助10
刚刚
1秒前
fzhou完成签到 ,获得积分10
1秒前
尘雾发布了新的文献求助10
1秒前
2秒前
一一发布了新的文献求助20
2秒前
2秒前
Aixia完成签到 ,获得积分10
3秒前
葡萄糖完成签到,获得积分10
3秒前
哈哈完成签到,获得积分10
3秒前
在水一方应助CC采纳,获得10
3秒前
3秒前
余笙完成签到 ,获得积分10
4秒前
神勇的雅香应助科研混子采纳,获得10
4秒前
TT发布了新的文献求助10
5秒前
李顺完成签到,获得积分20
6秒前
ayin发布了新的文献求助10
6秒前
wait发布了新的文献求助10
6秒前
我是站长才怪应助xg采纳,获得10
7秒前
童话艺术佳完成签到,获得积分10
7秒前
稀罕你完成签到,获得积分10
7秒前
junzilan发布了新的文献求助10
7秒前
anny.white完成签到,获得积分10
8秒前
科研通AI5应助平常的毛豆采纳,获得10
10秒前
SciGPT应助paul采纳,获得10
13秒前
15秒前
英姑应助书生采纳,获得10
16秒前
科研钓鱼佬完成签到,获得积分10
17秒前
19秒前
petrichor应助C_Cppp采纳,获得10
19秒前
nan完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
勤恳的雨文完成签到,获得积分10
20秒前
木森ab发布了新的文献求助10
21秒前
paul完成签到,获得积分10
21秒前
小鞋完成签到,获得积分10
22秒前
开心青旋发布了新的文献求助10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824