Additive Tensor Decomposition Considering Structural Data Information

张量(固有定义) 计算机科学 分段 数据挖掘 算法 人工智能 数学优化 数学 数学分析 纯数学
作者
Shancong Mou,Andi Wang,Chuck Zhang,Jianjun Shi
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (4): 2904-2917 被引量:16
标识
DOI:10.1109/tase.2021.3096964
摘要

Tensor data with rich structural information become increasingly important in process modeling, monitoring, and diagnosis in manufacturing medical and other applications. Here structural information is referred to the information of tensor components such as sparsity, smoothness, low-rank, and piecewise constancy. To reveal useful information from tensor data, we propose to decompose the tensor into the summation of multiple components based on their different structural information. In this article, we provide a new definition of structural information in tensor data. We then propose an additive tensor decomposition (ATD) framework to extract useful information from tensor data. This framework specifies a high dimensional optimization problem to obtain the components with distinct structural information. An alternating direction method of multipliers (ADMM) algorithm is proposed to solve it, which is highly parallelable and thus suitable for the proposed optimization problem. Two simulation examples and a real case study in medical image analysis illustrate the versatility and effectiveness of the ATD framework. Note to Practitioners—This article was motivated by a real case in medical imaging: extracting aortic valve calcification (AVC) regions from the tensor data obtained from computed tomography (CT) image series of the aortic region. The main objective is to decompose image series into multiple components corresponding to tissues, calcium deposition, and error. Similar needs are pervasive in other medical image analysis applications as well as the image-based modeling, monitoring, and diagnosis of industrial processes and systems. Existing methods fail to incorporate a detailed description of the properties of image series that reflect the physical understanding of the system in both the spatial and temporal domains. In this article, we provide a systematic description of the properties of image series and use them to develop a decomposition framework. It is applicable to various applications and can generate more accurate and interpretable results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助雪山飞龙采纳,获得20
1秒前
Xiaoxiannv完成签到,获得积分10
2秒前
三叔应助星河zp采纳,获得10
2秒前
星辰发布了新的文献求助10
2秒前
zyq应助柯善若采纳,获得10
4秒前
SmoonYK完成签到,获得积分10
7秒前
7秒前
巴拉巴拉发布了新的文献求助10
8秒前
与我常在发布了新的文献求助10
9秒前
yud发布了新的文献求助10
9秒前
10秒前
基础题应助独特的凝荷采纳,获得10
11秒前
星河zp完成签到,获得积分10
11秒前
冯小逢发布了新的文献求助10
11秒前
zmx完成签到 ,获得积分10
12秒前
12秒前
REBACK发布了新的文献求助10
14秒前
FashionBoy应助布丁采纳,获得10
15秒前
zero完成签到,获得积分10
15秒前
17秒前
NexusExplorer应助ssk采纳,获得10
17秒前
外向的雁玉完成签到,获得积分10
17秒前
Lucas应助科研通管家采纳,获得10
19秒前
852应助科研通管家采纳,获得10
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
今后应助科研通管家采纳,获得10
19秒前
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
慕青应助科研通管家采纳,获得10
19秒前
罗_应助科研通管家采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
温柔惜筠应助科研通管家采纳,获得10
20秒前
李爱国应助科研通管家采纳,获得10
20秒前
20秒前
搜集达人应助科研通管家采纳,获得10
20秒前
salvage发布了新的文献求助10
21秒前
与我常在完成签到,获得积分20
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137511
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7786944
捐赠科研通 2444783
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625770
版权声明 601023