Multi-omics profiling predicts allograft function after lung transplantation

微生物群 肺移植 脂质体 代谢组 医学 支气管肺泡灌洗 移植 生物 免疫学 内科学 代谢组学 生物信息学 脂类学
作者
Martin L. Watzenboeck,Anna-Dorothea Gorki,Federica Quattrone,Riem Gawish,Stefan Schwarz,Christopher Lambers,Péter Jaksch,Karin Lakovits,Sophie Zahalka,Nina Rahimi,Philipp Starkl,Dörte Symmank,Tyler Artner,Céline Pattaroni,Nikolaus Fortelny,Kristaps Klavins,Florian Frommlet,Benjamin J. Marsland,Konrad Höetzenecker,Stefanie Widder,Sylvia Knapp
出处
期刊:The European respiratory journal [European Respiratory Society]
卷期号:59 (2): 2003292-2003292 被引量:19
标识
DOI:10.1183/13993003.03292-2020
摘要

Lung transplantation is the ultimate treatment option for patients with end-stage respiratory diseases but bears the highest mortality rate among all solid organ transplantations due to chronic lung allograft dysfunction (CLAD). The mechanisms leading to CLAD remain elusive due to an insufficient understanding of the complex post-transplant adaptation processes.To better understand these lung adaptation processes after transplantation and to investigate their association with future changes in allograft function.We performed an exploratory cohort study of bronchoalveolar lavage samples from 78 lung recipients and donors. We analysed the alveolar microbiome using 16S rRNA sequencing, the cellular composition using flow cytometry, as well as metabolome and lipidome profiling.We established distinct temporal dynamics for each of the analysed data sets. Comparing matched donor and recipient samples, we revealed that recipient-specific as well as environmental factors, rather than the donor microbiome, shape the long-term lung microbiome. We further discovered that the abundance of certain bacterial strains correlated with underlying lung diseases even after transplantation. A decline in forced expiratory volume during the first second (FEV1) is a major characteristic of lung allograft dysfunction in transplant recipients. By using a machine learning approach, we could accurately predict future changes in FEV1 from our multi-omics data, whereby microbial profiles showed a particularly high predictive power.Bronchoalveolar microbiome, cellular composition, metabolome and lipidome show specific temporal dynamics after lung transplantation. The lung microbiome can predict future changes in lung function with high precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cl完成签到 ,获得积分10
2秒前
爱国完成签到,获得积分10
2秒前
赘婿应助某宁采纳,获得10
2秒前
稻草人完成签到 ,获得积分10
3秒前
yiyi完成签到 ,获得积分10
3秒前
漫步云端发布了新的文献求助10
3秒前
5秒前
李爱国应助义气的雨旋采纳,获得10
5秒前
闪闪梦曼发布了新的文献求助10
5秒前
8秒前
8秒前
搜集达人应助bobo采纳,获得10
9秒前
漫步云端完成签到,获得积分10
11秒前
秋夜白发布了新的文献求助10
11秒前
12秒前
哈哈哈发布了新的文献求助30
14秒前
Miss完成签到,获得积分10
14秒前
搜集达人应助荣枫采纳,获得10
15秒前
sss发布了新的文献求助10
15秒前
高贵逍遥完成签到 ,获得积分10
17秒前
萌新完成签到,获得积分10
17秒前
18秒前
19秒前
充电宝应助自由的傲儿采纳,获得10
19秒前
day发布了新的文献求助10
20秒前
sss关闭了sss文献求助
22秒前
22秒前
木子李完成签到,获得积分10
23秒前
sheep发布了新的文献求助10
23秒前
荣枫完成签到,获得积分10
24秒前
zxfaaaaa完成签到,获得积分10
25秒前
heihei完成签到,获得积分10
25秒前
25秒前
萤火完成签到,获得积分10
25秒前
橙子发布了新的文献求助10
26秒前
26秒前
所所应助banana采纳,获得10
28秒前
heartworm完成签到 ,获得积分10
29秒前
29秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163383
求助须知:如何正确求助?哪些是违规求助? 2814219
关于积分的说明 7903906
捐赠科研通 2473789
什么是DOI,文献DOI怎么找? 1317077
科研通“疑难数据库(出版商)”最低求助积分说明 631615
版权声明 602187