Underwater image recovery utilizing polarimetric imaging based on neural networks

水下 计算机科学 旋光法 人工智能 极化(电化学) 人工神经网络 均方误差 光学 计算机视觉 遥感 散射 数学 地质学 物理 海洋学 统计 物理化学 化学
作者
Ran Zhang,Xinyuan Gui,Haoyuan Cheng,Jinkui Chu
出处
期刊:Applied Optics [The Optical Society]
卷期号:60 (27): 8419-8419 被引量:21
标识
DOI:10.1364/ao.431299
摘要

Underwater imaging faces challenges due to complex optical properties in water. Our purpose is to explore the application of polarimetric imaging in image recovery under turbid water based on deep learning. A polarization camera is used to capture the polarization images of objects under water as datasets. The method used in our study aims to explore a structure and loss function that is suitable for the model. In terms of the model structure, four pairs of models consisting of polarized version and gray version based on the idea of dense U-Net and information flow were proposed. In the aspect of loss function, the method of combining weighted mean squared error with perceptual loss was proposed and a proper set of loss weights was selected through comparison experiments. Comparing the model outputs, it is found that adding polarized information along with the light intensity information to the model at the very front of the model structure brings about better recovering image. The model structure proposed can be used for image recovery in turbid water or other scattering environments. Since the polarization characteristics are considered, the recovered image has more detailed features than that where only intensity is considered. The results of comparison with other methods show the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶诗柳完成签到,获得积分10
刚刚
科研通AI5应助cccttt采纳,获得10
1秒前
2秒前
3秒前
科研小卡拉米完成签到,获得积分10
3秒前
3秒前
拂苏发布了新的文献求助30
3秒前
陈宇完成签到,获得积分20
3秒前
5秒前
stephen_wang完成签到,获得积分10
5秒前
SciGPT应助ytolll采纳,获得10
5秒前
大个应助时间差不多咯采纳,获得10
5秒前
6秒前
面包小狗完成签到,获得积分10
6秒前
王w完成签到,获得积分20
6秒前
7秒前
酷波er应助CC采纳,获得10
7秒前
科目三应助lfchen采纳,获得10
8秒前
刘炳序发布了新的文献求助10
8秒前
称心凡发布了新的文献求助20
9秒前
9秒前
qin希望应助nanxiangqingfeng采纳,获得50
9秒前
10秒前
五月发布了新的文献求助10
10秒前
10秒前
11秒前
lm完成签到,获得积分10
11秒前
Jocelyn7完成签到,获得积分10
12秒前
芒果味猕猴桃完成签到,获得积分10
12秒前
14秒前
Zhang应助fish采纳,获得10
15秒前
15秒前
南国之霄发布了新的文献求助10
15秒前
皮凡发布了新的文献求助10
16秒前
甜蜜夏青完成签到,获得积分10
16秒前
风趣的梦之完成签到,获得积分10
16秒前
sohee完成签到 ,获得积分10
16秒前
大个应助酷酷夏天采纳,获得10
17秒前
huhu完成签到,获得积分20
17秒前
碧蓝世立完成签到,获得积分10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Typology of Conditional Constructions 500
Facharztprüfung Kardiologie 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3587604
求助须知:如何正确求助?哪些是违规求助? 3156195
关于积分的说明 9509860
捐赠科研通 2858994
什么是DOI,文献DOI怎么找? 1571288
邀请新用户注册赠送积分活动 736829
科研通“疑难数据库(出版商)”最低求助积分说明 721959