Deep Learning for Automated Triaging of 4581 Breast MRI Examinations from the DENSE Trial

医学 急诊分诊台 乳房磁振造影 放射科 四分位间距 乳房成像 双雷达 工作量 磁共振成像 接收机工作特性 乳腺摄影术 核医学 乳腺癌 外科 内科学 癌症 急诊医学 操作系统 计算机科学
作者
Erik Verburg,Carla H. van Gils,Bas H. M. van der Velden,Marije F. Bakker,Ruud M. Pijnappel,Wouter B. Veldhuis,Kenneth G. A. Gilhuijs
出处
期刊:Radiology [Radiological Society of North America]
卷期号:302 (1): 29-36 被引量:27
标识
DOI:10.1148/radiol.2021203960
摘要

Background Supplemental screening with MRI has proved beneficial in women with extremely dense breasts. Most MRI examinations show normal anatomic and physiologic variation that may not require radiologic review. Thus, ways to triage these normal MRI examinations to reduce radiologist workload are needed. Purpose To determine the feasibility of an automated triaging method using deep learning (DL) to dismiss the highest number of MRI examinations without lesions while still identifying malignant disease. Materials and Methods This secondary analysis of data from the Dense Tissue and Early Breast Neoplasm Screening, or DENSE, trial evaluated breast MRI examinations from the first screening round performed in eight hospitals between December 2011 and January 2016. A DL model was developed to differentiate between breasts with lesions and breasts without lesions. The model was trained to dismiss breasts with normal phenotypical variation and to triage lesions (Breast Imaging Reporting and Data System [BI-RADS] categories 2-5) using eightfold internal-external validation. The model was trained on data from seven hospitals and tested on data from the eighth hospital, alternating such that each hospital was used once as an external test set. Performance was assessed using receiver operating characteristic analysis. At 100% sensitivity for malignant disease, the fraction of examinations dismissed from radiologic review was estimated. Results A total of 4581 MRI examinations of extremely dense breasts from 4581women (mean age, 54.3 years; interquartile range, 51.5-59.8 years) were included. Of the 9162 breasts, 838 had at least one lesion (BI-RADS category 2-5, of which 77 were malignant) and 8324 had no lesions. At 100% sensitivity for malignant lesions, the DL model considered 90.7% (95% CI: 86.7, 94.7) of the MRI examinations with lesions to be nonnormal and triaged them to radiologic review. The DL model dismissed 39.7% (95% CI: 30.0, 49.4) of the MRI examinations without lesions. The DL model had an average area under the receiver operating characteristic curve of 0.83 (95% CI: 0.80, 0.85) in the differentiation between normal breast MRI examinations and MRI examinations with lesions. Conclusion Automated analysis of breast MRI examinations in women with dense breasts dismissed nearly 40% of MRI scans without lesions while not missing any cancers. ClinicalTrials.gov: NCT01315015 © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Joe in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Qqqzj完成签到,获得积分10
1秒前
LALALA卫卫J发布了新的文献求助10
1秒前
CBWKEYANTONG123完成签到,获得积分10
2秒前
ding应助Leo采纳,获得10
2秒前
3秒前
3秒前
愉快草莓发布了新的文献求助10
4秒前
liu123456完成签到,获得积分10
4秒前
搬砖汉斯发布了新的文献求助200
4秒前
高贵的不凡完成签到,获得积分10
4秒前
淡淡咖啡豆应助冷静铃铛采纳,获得10
5秒前
科研侠发布了新的文献求助10
7秒前
7秒前
chaser发布了新的文献求助30
8秒前
深情安青应助Hardskills采纳,获得10
9秒前
9秒前
科研通AI5应助ywpzdnb采纳,获得10
10秒前
ffff发布了新的文献求助10
11秒前
11秒前
Rosemary发布了新的文献求助10
12秒前
12秒前
王秋婷发布了新的文献求助10
13秒前
刘柑橘完成签到,获得积分10
14秒前
Owen应助WOLF采纳,获得10
14秒前
乐正广山发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
Learning发布了新的文献求助10
17秒前
天天快乐应助森距离采纳,获得10
19秒前
20秒前
许蹦跶完成签到,获得积分10
20秒前
20秒前
胖虎不胖发布了新的文献求助10
21秒前
隐形曼青应助乐正广山采纳,获得10
21秒前
斯文败类应助不要熬夜采纳,获得10
22秒前
ywpzdnb完成签到,获得积分10
23秒前
23秒前
Hardskills发布了新的文献求助10
24秒前
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3772529
求助须知:如何正确求助?哪些是违规求助? 3317990
关于积分的说明 10188512
捐赠科研通 3032977
什么是DOI,文献DOI怎么找? 1663905
邀请新用户注册赠送积分活动 796020
科研通“疑难数据库(出版商)”最低求助积分说明 757108