Desorption hysteresis of coalbed methane and its controlling factors: a brief review

解吸 煤层气 磁滞 甲烷 化学 吸附 热力学 材料科学 煤矿开采 物理化学 有机化学 量子力学 物理
作者
Weikai Xu,Junhui Li,Xiang Wu,Du Liu,Zhuangsen Wang
出处
期刊:Frontiers of Earth Science [Springer Nature]
卷期号:15 (2): 224-236 被引量:18
标识
DOI:10.1007/s11707-021-0910-0
摘要

Most coal reservoirs show high gas content with relatively low desorption efficiency, which restricts the efficiency of coalbed methane (CBM) extraction and single-well productivity. This review highlights the desorption hysteresis mechanism and its controlling factors as well as methods and models to reveal desorption hysteresis and potential solutions. Methane adsorption and desorption can be recorded by both gravimetric and volumetric experiments. Although different adsorption models are used, desorption is generally considered with the Langmuir model. Desorption hysteresis is influenced by the petrophysical composition, thermal maturity, pore structure distribution of the coal, reservoir temperature, and moisture and water content. Methods for calculating desorption hysteresis include the area index, hysteresis index and introduction of a hysteresis factor and a hysteresis coefficient. Molecular dynamics simulations of methane desorption are mainly based on theories of kinetics, thermodynamics, and potential energy. The interaction forces operating among coal, water, and methane molecules can be calculated from microscopic intermolecular forces (van der Waals forces). The desorption hysteresis mechanism and desorption process still lack quantitative probe methodologies, and future research should focus on coal wettability under the constraints of liquid content, potential energy adjustment mechanism, and quantitative analysis of methane desorption rates. Further research is expected to reveal the desorption kinetics of methane through the use of the solid-liquid-gas three-phase coupling theory associated with the quantitative analysis of methane desorption hysteresis, thereby enhancing the recovery rate and efficiency of CBM wells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
南巷的猫完成签到,获得积分20
1秒前
2秒前
2秒前
nine发布了新的文献求助10
2秒前
3秒前
mxy发布了新的文献求助10
3秒前
3秒前
xrd关闭了xrd文献求助
3秒前
3秒前
刘溢完成签到,获得积分20
4秒前
斯文败类应助bdJ采纳,获得10
4秒前
慕青应助pzh采纳,获得10
4秒前
科研通AI6应助Sky采纳,获得30
5秒前
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
11秒前
青草蛋糕完成签到 ,获得积分10
12秒前
复杂储发布了新的文献求助10
12秒前
MCst发布了新的文献求助10
13秒前
芝士发布了新的文献求助10
14秒前
14秒前
shuaige完成签到,获得积分20
14秒前
linjunqi发布了新的文献求助10
14秒前
李健应助着急的青枫采纳,获得10
14秒前
15秒前
明越发布了新的文献求助10
15秒前
陈美宏完成签到,获得积分10
15秒前
坦率灵槐应助小白脸采纳,获得10
15秒前
Lilly完成签到,获得积分10
15秒前
yshog完成签到,获得积分10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649011
求助须知:如何正确求助?哪些是违规求助? 4777097
关于积分的说明 15046363
捐赠科研通 4807843
什么是DOI,文献DOI怎么找? 2571160
邀请新用户注册赠送积分活动 1527756
关于科研通互助平台的介绍 1486683