Ensemble machine learning methods for spatio-temporal data analysis of plant and ratoon sugarcane

梯度升压 人工智能 机器学习 决策树 特征选择 Boosting(机器学习) 计算机科学 二元分类 集成学习 降维 数据挖掘 维数之咒 回归 随机森林 人工神经网络 支持向量机 模式识别(心理学) 数学 统计
作者
Sandeep Kumar Singla,Rahul Garg,Om Prakash Dubey
出处
期刊:Intelligent Data Analysis [IOS Press]
卷期号:25 (5): 1291-1322 被引量:1
标识
DOI:10.3233/ida-205302
摘要

Recent technological enhancements in the field of information technology and statistical techniques allowed the sophisticated and reliable analysis based on machine learning methods. A number of machine learning data analytical tools may be exploited for the classification and regression problems. These tools and techniques can be effectively used for the highly data-intensive operations such as agricultural and meteorological applications, bioinformatics and stock market analysis based on the daily prices of the market. Machine learning ensemble methods such as Decision Tree (C5.0), Classification and Regression (CART), Gradient Boosting Machine (GBM) and Random Forest (RF) has been investigated in the proposed work. The proposed work demonstrates that temporal variations in the spectral data and computational efficiency of machine learning methods may be effectively used for the discrimination of types of sugarcane. The discrimination has been considered as a binary classification problem to segregate ratoon from plantation sugarcane. Variable importance selection based on Mean Decrease in Accuracy (MDA) and Mean Decrease in Gini (MDG) have been used to create the appropriate dataset for the classification. The performance of the binary classification model based on RF is the best in all the possible combination of input images. Feature selection based on MDA and MDG measures of RF is also important for the dimensionality reduction. It has been observed that RF model performed best with 97% accuracy, whereas the performance of GBM method is the lowest. Binary classification based on the remotely sensed data can be effectively handled using random forest method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助SCI采纳,获得10
刚刚
科研通AI5应助hobowei采纳,获得10
3秒前
可爱奇异果完成签到 ,获得积分10
3秒前
wang发布了新的文献求助10
4秒前
太空人完成签到,获得积分10
4秒前
123发布了新的文献求助10
5秒前
6秒前
该睡觉啦完成签到,获得积分20
6秒前
6秒前
莫x莫完成签到 ,获得积分10
8秒前
loewy完成签到,获得积分10
8秒前
黄婷发布了新的文献求助10
8秒前
8秒前
yuan完成签到,获得积分10
8秒前
zho发布了新的文献求助10
8秒前
8秒前
苏苏完成签到,获得积分10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得80
9秒前
Hello应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
万能图书馆应助内向秋寒采纳,获得10
9秒前
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
FashionBoy应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
zzzq应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得30
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
soso应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794