Ensemble machine learning methods for spatio-temporal data analysis of plant and ratoon sugarcane

梯度升压 人工智能 机器学习 决策树 特征选择 Boosting(机器学习) 计算机科学 二元分类 集成学习 降维 数据挖掘 维数之咒 回归 随机森林 人工神经网络 支持向量机 模式识别(心理学) 数学 统计
作者
Sandeep Kumar Singla,Rahul Garg,Om Prakash Dubey
出处
期刊:Intelligent Data Analysis [IOS Press]
卷期号:25 (5): 1291-1322 被引量:1
标识
DOI:10.3233/ida-205302
摘要

Recent technological enhancements in the field of information technology and statistical techniques allowed the sophisticated and reliable analysis based on machine learning methods. A number of machine learning data analytical tools may be exploited for the classification and regression problems. These tools and techniques can be effectively used for the highly data-intensive operations such as agricultural and meteorological applications, bioinformatics and stock market analysis based on the daily prices of the market. Machine learning ensemble methods such as Decision Tree (C5.0), Classification and Regression (CART), Gradient Boosting Machine (GBM) and Random Forest (RF) has been investigated in the proposed work. The proposed work demonstrates that temporal variations in the spectral data and computational efficiency of machine learning methods may be effectively used for the discrimination of types of sugarcane. The discrimination has been considered as a binary classification problem to segregate ratoon from plantation sugarcane. Variable importance selection based on Mean Decrease in Accuracy (MDA) and Mean Decrease in Gini (MDG) have been used to create the appropriate dataset for the classification. The performance of the binary classification model based on RF is the best in all the possible combination of input images. Feature selection based on MDA and MDG measures of RF is also important for the dimensionality reduction. It has been observed that RF model performed best with 97% accuracy, whereas the performance of GBM method is the lowest. Binary classification based on the remotely sensed data can be effectively handled using random forest method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
ant完成签到,获得积分10
1秒前
1秒前
Owen应助翟凯旋采纳,获得10
2秒前
khll完成签到,获得积分10
2秒前
2秒前
悄悄.完成签到,获得积分10
2秒前
5秒前
越遇发布了新的文献求助10
5秒前
amipc发布了新的文献求助10
6秒前
6秒前
大胆傲安发布了新的文献求助10
6秒前
Chenjz完成签到,获得积分10
7秒前
7秒前
小柒柒完成签到,获得积分10
7秒前
7秒前
octopus完成签到,获得积分10
9秒前
drunk完成签到 ,获得积分10
9秒前
三眼乌鸦完成签到,获得积分10
10秒前
笑点低战斗机完成签到,获得积分10
10秒前
雪妮儿完成签到,获得积分10
11秒前
lkl完成签到,获得积分20
11秒前
腼腆的耷发布了新的文献求助10
12秒前
卡奇Mikey完成签到,获得积分10
13秒前
小熊仔发布了新的文献求助10
13秒前
情怀应助zhan47采纳,获得10
14秒前
微笑冰棍完成签到 ,获得积分10
15秒前
大陆发布了新的文献求助20
17秒前
18秒前
19秒前
Owen应助合适明雪采纳,获得10
20秒前
SYLH应助小愚采纳,获得10
21秒前
21秒前
23秒前
研友_VZG7GZ应助hahaha123213123采纳,获得10
24秒前
25秒前
学术智子发布了新的文献求助10
25秒前
标致芷雪发布了新的文献求助10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755395
求助须知:如何正确求助?哪些是违规求助? 3298462
关于积分的说明 10105902
捐赠科研通 3013141
什么是DOI,文献DOI怎么找? 1655012
邀请新用户注册赠送积分活动 789339
科研通“疑难数据库(出版商)”最低求助积分说明 753273