电催化剂
催化作用
化学工程
材料科学
电池(电)
电解质
硫黄
锂硫电池
锂(药物)
钒
电化学
电极
化学
有机化学
物理化学
功率(物理)
冶金
内分泌学
工程类
物理
医学
量子力学
作者
Zhihao Yu,Wei Lv,Qiaowei Lin,Xiehe Huang,Ying Yang
出处
期刊:ACS Nano
[American Chemical Society]
日期:2021-10-01
卷期号:15 (10): 16878-16886
被引量:39
标识
DOI:10.1021/acsnano.1c07647
摘要
Catalysis is an effective way to improve the performance of lithium-sulfur (Li-S) batteries by enhancing the reaction kinetics of polysulfides. However, the bidirectional catalysis for discharging and charging processes in Li-S battery is still challenging. Herein, a (110) facet-dominated VO2 is prepared through the thermal-induced partial decomposition of (NH4)2V4O9 (NVO), forming a (110)VO2@NVO hybrid with the bidirectional catalysis ability. This (110) facet-dominated VO2 shows the ability to break the S-S bond to guide the Li2S deposition in the reduction process and reduce the delithiation barrier of Li2S to promote the oxidation process. The above hybrid is loaded on carbon nanofiber (CNF) to build an interlayer, where the 3D CNF and the conductive NVO ensure the fast electron transfer. The assembled battery with the above interlayer exhibits a high capacity of 1038 mAh g-1 after 300 cycles at 0.1 C (capacity retention: 70%). At a high rate of 5 C, a high capacity of 521 mAh g-1 after 1000 cycles is reached. Even under an ultrahigh sulfur loading of 10.3 mg cm-2 and a low electrolyte/sulfur ratio of 4 μL mgS-1, stable cycling performance with a high capacity of >3 mAh cm-2 is also achieved.
科研通智能强力驱动
Strongly Powered by AbleSci AI