ADVERSARIALuscator: An Adversarial-DRL based Obfuscator and Metamorphic Malware Swarm Generator

操作码 恶意软件 计算机科学 混淆 对抗制 人工智能 计算机安全 隐病毒学 机器学习 程序设计语言
作者
Mohit Sewak,Sanjay K. Sahay,Hemant Rathore
标识
DOI:10.1109/ijcnn52387.2021.9534016
摘要

Advanced metamorphic malware and ransomware, by using obfuscation, could alter their internal structure with every attack. If such malware could intrude even into any of the IoT networks, then even if the original malware instance gets detected, by that time it can still infect the entire network. It is challenging to obtain training data for such evasive malware. Therefore, in this paper, we present ADVERSARIALuscator, a novel system that uses specialized Adversarial-DRL to obfuscate malware at the opcode level and create multiple metamorphic instances of the same. To the best of our knowledge, ADVERSARIALuscator is the first-ever system that adopts the Markov Decision Process-based approach to convert and find a solution to the problem of creating individual obfuscations at the opcode level. This is important as the machine language level is the least at which functionality could be preserved so as to mimic an actual attack effectively. ADVERSARIALuscator is also the first-ever system to use efficient continuous action control capable of deep reinforcement learning agents like the Proximal Policy Optimization in the area of cyber security. Experimental results indicate that ADVERSARIALuscator could raise the metamorphic probability of a corpus of malware by >0.45. Additionally, more than 33% of metamorphic instances generated by ADVERSARIALuscator were able to evade the most potent IDS. If such malware could intrude even into any of the IoT networks, then even if the original malware instance gets detected, by that time it can still infect the entire network. Hence ADVERSARIALuscator could be used to generate data representative of a swarm of very potent and coordinated AI-based metamorphic malware attacks. The so generated data and simulations could be used to bolster the defenses of an IDS against an actual AI-based metamorphic attack from advanced malware and ransomware.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
无花果应助xixi采纳,获得30
2秒前
3秒前
4秒前
wwww0wwww应助AC赵先生采纳,获得10
4秒前
4秒前
栗子完成签到,获得积分10
5秒前
大有阳光应助贲如音采纳,获得10
5秒前
6秒前
anananand发布了新的文献求助10
6秒前
7秒前
9秒前
weilucking完成签到,获得积分10
9秒前
Lucky小M完成签到,获得积分10
9秒前
饱满绮波发布了新的文献求助10
10秒前
搞怪寒烟完成签到,获得积分10
11秒前
哆啦A梦应助含糊的代丝采纳,获得10
12秒前
Linda发布了新的文献求助10
14秒前
田様应助司空豁采纳,获得10
18秒前
丘比特应助小刘爱科研采纳,获得10
18秒前
19秒前
Linda完成签到,获得积分10
20秒前
KevinSun完成签到,获得积分10
23秒前
小月完成签到,获得积分10
23秒前
hao完成签到 ,获得积分10
24秒前
咪路完成签到,获得积分10
24秒前
姚琳完成签到,获得积分10
25秒前
Huang完成签到 ,获得积分0
25秒前
文静发布了新的文献求助30
26秒前
mogi完成签到,获得积分10
27秒前
28秒前
111应助姚琳采纳,获得10
29秒前
Akim应助ZKK采纳,获得10
30秒前
zouyiming完成签到,获得积分10
30秒前
田田田完成签到,获得积分20
31秒前
jovrtic发布了新的文献求助10
31秒前
AC赵先生发布了新的文献求助10
32秒前
32秒前
xixi发布了新的文献求助30
34秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155790
求助须知:如何正确求助?哪些是违规求助? 2807042
关于积分的说明 7871703
捐赠科研通 2465404
什么是DOI,文献DOI怎么找? 1312221
科研通“疑难数据库(出版商)”最低求助积分说明 629958
版权声明 601905