ADVERSARIALuscator: An Adversarial-DRL based Obfuscator and Metamorphic Malware Swarm Generator

操作码 恶意软件 计算机科学 混淆 对抗制 人工智能 计算机安全 隐病毒学 机器学习 程序设计语言
作者
Mohit Sewak,Sanjay K. Sahay,Hemant Rathore
标识
DOI:10.1109/ijcnn52387.2021.9534016
摘要

Advanced metamorphic malware and ransomware, by using obfuscation, could alter their internal structure with every attack. If such malware could intrude even into any of the IoT networks, then even if the original malware instance gets detected, by that time it can still infect the entire network. It is challenging to obtain training data for such evasive malware. Therefore, in this paper, we present ADVERSARIALuscator, a novel system that uses specialized Adversarial-DRL to obfuscate malware at the opcode level and create multiple metamorphic instances of the same. To the best of our knowledge, ADVERSARIALuscator is the first-ever system that adopts the Markov Decision Process-based approach to convert and find a solution to the problem of creating individual obfuscations at the opcode level. This is important as the machine language level is the least at which functionality could be preserved so as to mimic an actual attack effectively. ADVERSARIALuscator is also the first-ever system to use efficient continuous action control capable of deep reinforcement learning agents like the Proximal Policy Optimization in the area of cyber security. Experimental results indicate that ADVERSARIALuscator could raise the metamorphic probability of a corpus of malware by >0.45. Additionally, more than 33% of metamorphic instances generated by ADVERSARIALuscator were able to evade the most potent IDS. If such malware could intrude even into any of the IoT networks, then even if the original malware instance gets detected, by that time it can still infect the entire network. Hence ADVERSARIALuscator could be used to generate data representative of a swarm of very potent and coordinated AI-based metamorphic malware attacks. The so generated data and simulations could be used to bolster the defenses of an IDS against an actual AI-based metamorphic attack from advanced malware and ransomware.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111完成签到,获得积分10
刚刚
啦哈啦哈啦完成签到,获得积分10
刚刚
songyl完成签到,获得积分10
1秒前
1秒前
x_x完成签到,获得积分10
1秒前
fanch1122完成签到,获得积分10
2秒前
mryun完成签到,获得积分10
2秒前
bingo完成签到,获得积分10
2秒前
2秒前
简单的可乐完成签到,获得积分10
2秒前
飞飞发布了新的文献求助10
2秒前
rdf完成签到,获得积分10
2秒前
baolipao完成签到,获得积分10
3秒前
天阳完成签到,获得积分10
3秒前
知了完成签到,获得积分10
3秒前
柚子完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
传奇3应助QAQSS采纳,获得10
4秒前
皑似山上雪完成签到,获得积分10
4秒前
宁静致远QY完成签到,获得积分10
4秒前
小黄鸭呀完成签到,获得积分10
4秒前
浮游应助灯灯采纳,获得10
5秒前
科研go完成签到,获得积分10
5秒前
卡布达完成签到,获得积分10
5秒前
就爱吃抹茶完成签到 ,获得积分10
6秒前
6秒前
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
yar应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
yar应助科研通管家采纳,获得10
6秒前
Yuki发布了新的文献求助10
6秒前
过奖啦完成签到,获得积分10
6秒前
6秒前
7秒前
wangwang完成签到,获得积分10
7秒前
如7而至完成签到,获得积分10
7秒前
紧张的刺猬完成签到,获得积分10
7秒前
儒雅的若翠完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645277
求助须知:如何正确求助?哪些是违规求助? 4768340
关于积分的说明 15027650
捐赠科研通 4803859
什么是DOI,文献DOI怎么找? 2568523
邀请新用户注册赠送积分活动 1525813
关于科研通互助平台的介绍 1485484