ADVERSARIALuscator: An Adversarial-DRL based Obfuscator and Metamorphic Malware Swarm Generator

操作码 恶意软件 计算机科学 混淆 对抗制 人工智能 计算机安全 隐病毒学 机器学习 程序设计语言
作者
Mohit Sewak,Sanjay K. Sahay,Hemant Rathore
标识
DOI:10.1109/ijcnn52387.2021.9534016
摘要

Advanced metamorphic malware and ransomware, by using obfuscation, could alter their internal structure with every attack. If such malware could intrude even into any of the IoT networks, then even if the original malware instance gets detected, by that time it can still infect the entire network. It is challenging to obtain training data for such evasive malware. Therefore, in this paper, we present ADVERSARIALuscator, a novel system that uses specialized Adversarial-DRL to obfuscate malware at the opcode level and create multiple metamorphic instances of the same. To the best of our knowledge, ADVERSARIALuscator is the first-ever system that adopts the Markov Decision Process-based approach to convert and find a solution to the problem of creating individual obfuscations at the opcode level. This is important as the machine language level is the least at which functionality could be preserved so as to mimic an actual attack effectively. ADVERSARIALuscator is also the first-ever system to use efficient continuous action control capable of deep reinforcement learning agents like the Proximal Policy Optimization in the area of cyber security. Experimental results indicate that ADVERSARIALuscator could raise the metamorphic probability of a corpus of malware by >0.45. Additionally, more than 33% of metamorphic instances generated by ADVERSARIALuscator were able to evade the most potent IDS. If such malware could intrude even into any of the IoT networks, then even if the original malware instance gets detected, by that time it can still infect the entire network. Hence ADVERSARIALuscator could be used to generate data representative of a swarm of very potent and coordinated AI-based metamorphic malware attacks. The so generated data and simulations could be used to bolster the defenses of an IDS against an actual AI-based metamorphic attack from advanced malware and ransomware.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dc完成签到,获得积分10
刚刚
刚刚
SciGPT应助木木采纳,获得10
1秒前
Doctor完成签到,获得积分10
1秒前
1秒前
LV发布了新的文献求助10
1秒前
Wayne完成签到,获得积分10
1秒前
万能图书馆应助陈慕枫采纳,获得10
1秒前
2秒前
DDD完成签到,获得积分10
2秒前
2秒前
悦耳盼海完成签到,获得积分10
3秒前
爪人猫完成签到,获得积分10
3秒前
逝水无痕发布了新的文献求助10
4秒前
petrichor完成签到,获得积分10
4秒前
闪闪凝梦完成签到 ,获得积分10
4秒前
CodeCraft应助Faceman采纳,获得10
4秒前
lyk2815完成签到,获得积分10
4秒前
飞奔小子发布了新的文献求助10
5秒前
5秒前
柯米克发布了新的文献求助10
5秒前
虚幻采枫发布了新的文献求助10
5秒前
腾飞完成签到,获得积分10
6秒前
6秒前
Bigbiglei完成签到,获得积分10
6秒前
hellozoe发布了新的文献求助10
6秒前
finger完成签到,获得积分10
6秒前
6秒前
内向的苡完成签到,获得积分20
6秒前
happyboy2008完成签到,获得积分10
7秒前
泡芙完成签到 ,获得积分10
7秒前
Cutewm完成签到,获得积分10
7秒前
8秒前
wyy发布了新的文献求助10
8秒前
等待的映之关注了科研通微信公众号
9秒前
梦启完成签到,获得积分10
9秒前
9秒前
9秒前
Owen应助奈落采纳,获得10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997