Information consistent degree‐based clustering method for large‐scale group decision‐making with linear uncertainty distributions information

聚类分析 数据挖掘 偏爱 数学 维数之咒 群体决策 计算机科学 统计 心理学 社会心理学
作者
Yanxin Xu,Zaiwu Gong,Guo Wei,Weiwei Guo,Enrique Herrera‐Viedma
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:37 (6): 3394-3439 被引量:11
标识
DOI:10.1002/int.22695
摘要

Clustering analysis is a key technique in reducing the dimensionality of high volume irregular data containing large-scale group decision-making (LSGDM) information. Uncertainty theory is suitable for subjective estimation or situation, such as lack of historical data, and it can be employed to effectively express the uncertainty of trust and preference information in LSGDM problems. This paper studies the dimensionality reduction and subgroup optimization in LSGDM by utilizing linear uncertain variables in social networks. A clustering method is proposed to decompose the large group into several subgroups of higher consilience degrees and higher preference similarities, and lower the dimension of information for LSGDM. In the clustering process, two measurement attributes, trust relationship and preference relationship of decision-makers, are combined, and information consistent degree is utilized as the clustering indicator. This approach does not need to preset the threshold and the number of subgroups, and can be employed to obtain subgroups with similar preferences and stable trust relationship. Through the clustering reliability evaluation of subgroups, the rationality of large-scale group clustering results is verified. Subgroup consensus contribution is used to identify superior subgroups and quantify the role of subgroups in improving the consensus level. An example of emergency decision-making and comparative analysis is provided to explain the feasibility and advantages of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
大大完成签到,获得积分10
3秒前
3秒前
3秒前
Xiaoxiao应助greenPASS666采纳,获得10
3秒前
现代的秋白完成签到,获得积分10
3秒前
从容的盼晴完成签到,获得积分10
3秒前
scvrl完成签到,获得积分10
4秒前
4秒前
楼寒天发布了新的文献求助10
4秒前
请叫我风吹麦浪应助C2采纳,获得10
6秒前
xlj发布了新的文献求助10
6秒前
6秒前
迷路白桃完成签到,获得积分10
7秒前
kento发布了新的文献求助30
7秒前
眯眯眼的衬衫应助yKkkkkk采纳,获得10
7秒前
小豆包科研冲刺者完成签到,获得积分10
7秒前
黄饱饱完成签到,获得积分10
8秒前
8秒前
传奇3应助CO2采纳,获得10
9秒前
10秒前
称心乐枫完成签到,获得积分10
11秒前
11秒前
22发布了新的文献求助10
11秒前
berry发布了新的文献求助10
11秒前
kingmin应助毛慢慢采纳,获得10
12秒前
完美世界应助顺利鱼采纳,获得10
13秒前
搜集达人应助招财不肥采纳,获得10
14秒前
sweetbearm应助李秋静采纳,获得10
14秒前
Michael_li完成签到,获得积分10
14秒前
whs完成签到,获得积分10
16秒前
科研通AI5应助xlj采纳,获得10
17秒前
再干一杯发布了新的文献求助10
17秒前
18秒前
满意的天完成签到 ,获得积分10
18秒前
luoshiwen完成签到,获得积分10
18秒前
落寞的觅柔完成签到,获得积分10
20秒前
21秒前
LUNWENREQUEST发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808