To spike or to localize? Strategies to improve the prediction of local soil properties using regional spectral library

偏最小二乘回归 回归 统计 回归分析 相似性(几何) 预测建模 线性回归 局部回归 数学 模式识别(心理学) 计算机科学 环境科学 人工智能 图像(数学) 多项式回归
作者
Wartini Ng,Budiman Minasny,Edward J. Jones,Alex B. McBratney
出处
期刊:Geoderma [Elsevier]
卷期号:406: 115501-115501 被引量:34
标识
DOI:10.1016/j.geoderma.2021.115501
摘要

An increasing number of soil spectral libraries are being developed at larger extents, including at national, continental, and global scales. However, the prediction accuracy of these libraries was often fairly poor when used on local scales. This study evaluates different strategies to improve the model accuracy of a regional spectral library for soil organic carbon prediction in four different local target areas. In total, five strategies using the Partial least squares regression (PLSR) were compared, including the use of local, spiked-regional, spiked-subset-regional and two localized models (memory based learning (MBL) and localized PLSR). MBL derives a new local prediction model based on a subset of the regional spectra similar to the new sample to be predicted. A localized PLSR calibrates a linear regression model using projected scores of the local samples derived from a pre-trained regional PLSR model. Validation results showed that the performances of the spiked models were not much better than those derived from the local and localized models. With >20 local samples, the localized PLSR model performed better than both the local and spiked-regional models. MBL model achieved similar performance to the localized PLSR model. Nevertheless, the accuracy of the models was heavily affected by both the spectral similarity of the data and the statistics of the predictand. Therefore, we recommend localizing the prediction models. Our results also suggest that spiking affected the regression coefficients of the PLSR models but not the loadings, which enabled the compression of spectra data into informative PLS scores. If the local spectra have low similarity to the regional spectral library, building a local spectral library would be more beneficial, assuming the sample size is large enough (>30).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一进实验室就犯困完成签到,获得积分10
1秒前
1秒前
阿宝完成签到,获得积分0
2秒前
小熊完成签到,获得积分10
3秒前
hdx完成签到 ,获得积分10
3秒前
矮小的笑槐完成签到,获得积分10
4秒前
yueqin完成签到,获得积分10
5秒前
Ehgnix完成签到,获得积分10
5秒前
如果完成签到,获得积分10
5秒前
yoyo完成签到 ,获得积分10
7秒前
Morri完成签到,获得积分10
7秒前
恰恰发布了新的文献求助10
8秒前
旺旺碎冰冰完成签到,获得积分10
8秒前
我睡觉的时候不困完成签到 ,获得积分10
9秒前
501小队完成签到,获得积分10
9秒前
WANGs完成签到,获得积分10
10秒前
12秒前
无事小神仙完成签到,获得积分10
12秒前
Cooby完成签到,获得积分10
13秒前
huco完成签到,获得积分10
13秒前
13秒前
kin完成签到,获得积分10
13秒前
马华化完成签到,获得积分10
13秒前
小西瓜完成签到,获得积分20
13秒前
与一完成签到 ,获得积分10
13秒前
lucky完成签到,获得积分10
14秒前
14秒前
爆米花应助长安采纳,获得10
15秒前
李健的小迷弟应助Alive采纳,获得10
15秒前
16秒前
自然芹发布了新的文献求助10
17秒前
18秒前
缓慢的冬云完成签到,获得积分10
18秒前
Edgar完成签到,获得积分10
18秒前
迷路的映雁完成签到 ,获得积分10
18秒前
19秒前
xiaoGuo完成签到,获得积分10
19秒前
19秒前
拓跋傲薇完成签到,获得积分10
19秒前
destiny完成签到,获得积分10
20秒前
高分求助中
Evolution 10000
CANCER DISCOVERY癌症研究的新前沿:中国科研领军人物的创新构想 中国专刊 500
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158693
求助须知:如何正确求助?哪些是违规求助? 2809927
关于积分的说明 7884596
捐赠科研通 2468681
什么是DOI,文献DOI怎么找? 1314374
科研通“疑难数据库(出版商)”最低求助积分说明 630601
版权声明 602012