To spike or to localize? Strategies to improve the prediction of local soil properties using regional spectral library

偏最小二乘回归 回归 统计 回归分析 相似性(几何) 预测建模 线性回归 局部回归 数学 模式识别(心理学) 计算机科学 环境科学 人工智能 多项式回归 图像(数学)
作者
Wartini Ng,Budiman Minasny,Edward J. Jones,Alex B. McBratney
出处
期刊:Geoderma [Elsevier]
卷期号:406: 115501-115501 被引量:34
标识
DOI:10.1016/j.geoderma.2021.115501
摘要

An increasing number of soil spectral libraries are being developed at larger extents, including at national, continental, and global scales. However, the prediction accuracy of these libraries was often fairly poor when used on local scales. This study evaluates different strategies to improve the model accuracy of a regional spectral library for soil organic carbon prediction in four different local target areas. In total, five strategies using the Partial least squares regression (PLSR) were compared, including the use of local, spiked-regional, spiked-subset-regional and two localized models (memory based learning (MBL) and localized PLSR). MBL derives a new local prediction model based on a subset of the regional spectra similar to the new sample to be predicted. A localized PLSR calibrates a linear regression model using projected scores of the local samples derived from a pre-trained regional PLSR model. Validation results showed that the performances of the spiked models were not much better than those derived from the local and localized models. With >20 local samples, the localized PLSR model performed better than both the local and spiked-regional models. MBL model achieved similar performance to the localized PLSR model. Nevertheless, the accuracy of the models was heavily affected by both the spectral similarity of the data and the statistics of the predictand. Therefore, we recommend localizing the prediction models. Our results also suggest that spiking affected the regression coefficients of the PLSR models but not the loadings, which enabled the compression of spectra data into informative PLS scores. If the local spectra have low similarity to the regional spectral library, building a local spectral library would be more beneficial, assuming the sample size is large enough (>30).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cici的新长征完成签到 ,获得积分10
刚刚
Genius发布了新的文献求助10
刚刚
追寻的夏波应助obito采纳,获得10
1秒前
科研通AI6应助周周周采纳,获得10
1秒前
3秒前
木木杨完成签到,获得积分10
4秒前
潇洒的冰淇淋完成签到,获得积分10
4秒前
5秒前
zzzzzzzzzzzz发布了新的文献求助10
5秒前
5秒前
Akim应助HUYAOWEI采纳,获得10
5秒前
无极微光应助HUYAOWEI采纳,获得20
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
深情的新儿完成签到,获得积分10
8秒前
虚幻的芷珊完成签到,获得积分10
9秒前
clio完成签到,获得积分10
9秒前
ri_290发布了新的文献求助10
10秒前
10秒前
所所应助耍酷问兰采纳,获得10
10秒前
scuter发布了新的文献求助10
10秒前
11秒前
渺渺发布了新的文献求助10
12秒前
jwjzsznb发布了新的文献求助50
12秒前
12秒前
阳光的衫发布了新的文献求助10
13秒前
爆爆发布了新的文献求助10
13秒前
stop here完成签到,获得积分10
13秒前
bkagyin应助scuter采纳,获得10
15秒前
思源应助Genius采纳,获得10
15秒前
啵啵龙完成签到,获得积分10
16秒前
17秒前
酷波er应助HUYAOWEI采纳,获得10
18秒前
乐乐应助HUYAOWEI采纳,获得10
18秒前
大个应助HUYAOWEI采纳,获得10
18秒前
科研通AI6应助HUYAOWEI采纳,获得10
18秒前
小二郎应助HUYAOWEI采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594302
求助须知:如何正确求助?哪些是违规求助? 4679974
关于积分的说明 14812661
捐赠科研通 4646837
什么是DOI,文献DOI怎么找? 2534882
邀请新用户注册赠送积分活动 1502862
关于科研通互助平台的介绍 1469497