已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

To spike or to localize? Strategies to improve the prediction of local soil properties using regional spectral library

偏最小二乘回归 回归 统计 回归分析 相似性(几何) 预测建模 线性回归 局部回归 数学 模式识别(心理学) 计算机科学 环境科学 人工智能 多项式回归 图像(数学)
作者
Wartini Ng,Budiman Minasny,Edward J. Jones,Alex B. McBratney
出处
期刊:Geoderma [Elsevier]
卷期号:406: 115501-115501 被引量:34
标识
DOI:10.1016/j.geoderma.2021.115501
摘要

An increasing number of soil spectral libraries are being developed at larger extents, including at national, continental, and global scales. However, the prediction accuracy of these libraries was often fairly poor when used on local scales. This study evaluates different strategies to improve the model accuracy of a regional spectral library for soil organic carbon prediction in four different local target areas. In total, five strategies using the Partial least squares regression (PLSR) were compared, including the use of local, spiked-regional, spiked-subset-regional and two localized models (memory based learning (MBL) and localized PLSR). MBL derives a new local prediction model based on a subset of the regional spectra similar to the new sample to be predicted. A localized PLSR calibrates a linear regression model using projected scores of the local samples derived from a pre-trained regional PLSR model. Validation results showed that the performances of the spiked models were not much better than those derived from the local and localized models. With >20 local samples, the localized PLSR model performed better than both the local and spiked-regional models. MBL model achieved similar performance to the localized PLSR model. Nevertheless, the accuracy of the models was heavily affected by both the spectral similarity of the data and the statistics of the predictand. Therefore, we recommend localizing the prediction models. Our results also suggest that spiking affected the regression coefficients of the PLSR models but not the loadings, which enabled the compression of spectra data into informative PLS scores. If the local spectra have low similarity to the regional spectral library, building a local spectral library would be more beneficial, assuming the sample size is large enough (>30).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Flllllll发布了新的文献求助20
2秒前
上官若男应助Wqhao采纳,获得10
3秒前
windy发布了新的文献求助10
4秒前
5秒前
charm完成签到,获得积分10
6秒前
9秒前
charm发布了新的文献求助10
9秒前
羊村霸总懒大王完成签到 ,获得积分10
10秒前
科研学术完成签到,获得积分10
13秒前
Wei发布了新的文献求助10
13秒前
慕青应助charm采纳,获得10
15秒前
Zeno完成签到 ,获得积分10
16秒前
17秒前
18秒前
18秒前
失眠的笑翠完成签到 ,获得积分10
19秒前
windy完成签到,获得积分10
19秒前
从容映易完成签到,获得积分10
21秒前
lalala发布了新的文献求助10
22秒前
飞龙爵士发布了新的文献求助10
22秒前
xuan完成签到,获得积分10
22秒前
JL完成签到,获得积分10
23秒前
丸子顺利毕业完成签到,获得积分10
25秒前
骀荡完成签到,获得积分10
27秒前
顾矜应助过时的不评采纳,获得10
27秒前
sanyue完成签到,获得积分10
27秒前
HYD电击小子完成签到,获得积分10
31秒前
温婉的谷菱完成签到,获得积分10
31秒前
123发布了新的文献求助10
32秒前
33秒前
Flllllll完成签到,获得积分10
34秒前
34秒前
小恐龙完成签到,获得积分10
35秒前
35秒前
Zhaoyuemeng完成签到 ,获得积分10
39秒前
su完成签到 ,获得积分10
40秒前
yeeeee发布了新的文献求助10
41秒前
余弦完成签到 ,获得积分10
42秒前
FFFFF完成签到 ,获得积分0
43秒前
44秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622109
求助须知:如何正确求助?哪些是违规求助? 4707018
关于积分的说明 14938300
捐赠科研通 4767941
什么是DOI,文献DOI怎么找? 2552117
邀请新用户注册赠送积分活动 1514298
关于科研通互助平台的介绍 1474965