Federated Transfer Learning Based Cross-Domain Prediction for Smart Manufacturing

计算机科学 学习迁移 领域(数学分析) 机器学习 数据建模 原始数据 信息隐私 人工智能 大数据 分布式计算 数据挖掘 数据库 计算机安全 数学 数学分析 程序设计语言
作者
Kevin I‐Kai Wang,Xiaokang Zhou,Wei Liang,Zheng Yan,Jinhua She
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (6): 4088-4096 被引量:125
标识
DOI:10.1109/tii.2021.3088057
摘要

Smart manufacturing aims to support highly customizable production processes. Therefore, the associated machine intelligence needs to be quickly adaptable to new products, processes, and applications with limited training data while preserving data privacy. In this article, a new federated transfer learning framework, federated transfer learning for cross-domain prediction, is proposed to address the challenges of data scarcity and data privacy faced by most machine learning approaches in modern smart manufacturing with cross-domain applications. The framework architecture consists of a central server and several groups of smart devices, where each group handles a different application. The existing applications can share their knowledge through the central server as base models, while new applications can convert a base model to their target-domain models with limited application-specific data using a transfer learning technique. Meanwhile, the federated learning scheme is deployed within a group to further enhance the accuracy of the application-specific model. The integrated framework allows model sharing across the central server and different smart devices without exposing any raw data and, hence, protects the data privacy. Two public datasets, COCO and PETS2009, which represent the source and target applications, are employed for evaluations. The simulation results show that the proposed method outperforms two state-of-the-art machine learning approaches by achieving better learning efficiency and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糊涂塌客发布了新的文献求助10
刚刚
andy_lee完成签到,获得积分10
刚刚
咿咿发布了新的文献求助10
刚刚
小蘑菇应助hhh采纳,获得10
2秒前
2秒前
2秒前
文艺的白开水完成签到,获得积分10
3秒前
wanci应助Roxy采纳,获得10
3秒前
Ava应助511采纳,获得10
3秒前
粗心的无剑完成签到 ,获得积分10
3秒前
4秒前
彭于晏应助sll采纳,获得10
4秒前
罗兴鲜发布了新的文献求助10
5秒前
5秒前
5秒前
核桃应助科研通管家采纳,获得30
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
6秒前
小张应助科研通管家采纳,获得10
6秒前
popvich应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得30
6秒前
小lu应助bdJ采纳,获得10
6秒前
冷艳迎蕾应助科研通管家采纳,获得30
6秒前
CipherSage应助科研通管家采纳,获得30
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
namk完成签到,获得积分10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
黄紫红蓝发布了新的文献求助10
6秒前
???完成签到,获得积分10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得30
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
糊涂塌客完成签到,获得积分10
7秒前
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
伏坎完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258146
求助须知:如何正确求助?哪些是违规求助? 4420085
关于积分的说明 13759156
捐赠科研通 4293598
什么是DOI,文献DOI怎么找? 2356080
邀请新用户注册赠送积分活动 1352449
关于科研通互助平台的介绍 1313237