曲折
电极
材料科学
电化学
离子
多孔性
层状结构
扩散
电池(电)
化学工程
电化学动力学
锂(药物)
纳米技术
光电子学
化学
功率(物理)
复合材料
物理化学
物理
内分泌学
工程类
有机化学
热力学
医学
量子力学
作者
Xiao Zhang,Zeyu Hui,Steven T. King,Lei Wang,Zhengyu Ju,Jingyi Wu,Kenneth J. Takeuchi,Amy C. Marschilok,Alan C. West,Esther S. Takeuchi,Guihua Yu
出处
期刊:Nano Letters
[American Chemical Society]
日期:2021-07-01
卷期号:21 (13): 5896-5904
被引量:76
标识
DOI:10.1021/acs.nanolett.1c02142
摘要
Thick electrodes, although promising toward high-energy battery systems, suffer from restricted lithium-ion transport kinetics due to prolonged diffusion lengths and tortuous transport pathways. Despite the emerging low-tortuosity designs, capacity retention under higher current densities is still limited. Herein, we employ a modified ice-templating method to fabricate low-tortuosity porous electrodes with tunable wall thickness and channel width and systematically investigate the critical impacts of the fine structural parameters on the thick electrode electrochemistry. While the porous electrodes with thick walls show diminished capability under a C-rate larger than 1.5 C, those with thinner walls could maintain ∼70% capacity under 2.5 C. The superior capacity retention is ascribed to the fast diffusion into the thin lamellar walls compared with their thicker counterparts. This study provides deeper insights into structure-affected electrochemistry and opens up new perspective of 3D porous architectural designs for high-energy and high-power electrodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI