Application of Machine Learning to Identify Clinically Meaningful Risk Group for Osteoporosis in Individuals Under the Recommended Age for Dual-Energy X-Ray Absorptiometry

骨质疏松症 医学 双重能量 群(周期表) 骨科手术 双能X射线吸收法 物理疗法 老年学 内科学 骨矿物 外科 物理 量子力学
作者
Hyun Woo Park,Hyojung Jung,Kyoung Yeon Back,Hyeon Ju Choi,Kwang Sun Ryu,Hyo Soung,Eun Kyung Lee,A Ram Hong,Yul Hwangbo
出处
期刊:Calcified Tissue International [Springer Science+Business Media]
卷期号:109 (6): 645-655 被引量:15
标识
DOI:10.1007/s00223-021-00880-x
摘要

Dual-energy X-ray absorptiometry (DXA) is the gold standard for diagnosing osteoporosis; it is generally recommended in men ≥ 70 and women ≥ 65 years old. Therefore, assessment of clinical risk factors for osteoporosis is very important in individuals under the recommended age for DXA. Here, we examine the diagnostic performance of machine learning-based prediction models for osteoporosis in individuals under the recommended age for DXA examination. Data of 2210 men aged 50-69 and 1099 women aged 50-64 obtained from the Korea National Health and Nutrition Examination Survey IV-V were analyzed. Extreme gradient boosting (XGBoost) was used to find relevant clinical features and applied to three machine learning models: XGBoost, logistic regression, and a multilayer perceptron. For the prediction of osteoporosis, the XGBoost model using the top 20 features extracted from XGBoost showed the most reliable performance with area under the receiver operating characteristic curve (AUROC) of 0.73 and 0.79 in men and women, respectively. We compared the diagnostic accuracy of the Shapley additive explanation values based on a risk-score model obtained from XGBoost and conventional osteoporosis risk assessment tools for prediction of osteoporosis using optimal cut-off values for each model. We observed that a cut-off risk score of ≥ 28 in men and ≥ 47 in women was optimal to classify a positive screening for osteoporosis (an AUROC of 0.86 in men and 0.91 in women). The XGBoost-based osteoporosis-prediction model outperformed conventional risk assessment tools. Therefore, machine learning-based prediction models are a more suitable option than conventional risk assessment methods for screening osteoporosis in individuals under the recommended age for DXA examination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助马户的崛起采纳,获得10
1秒前
沈大发布了新的文献求助10
1秒前
1秒前
科研通AI5应助美满冷安采纳,获得10
1秒前
Yangon发布了新的文献求助10
2秒前
faye完成签到,获得积分10
2秒前
4秒前
皮卡丘发布了新的文献求助10
6秒前
7秒前
9秒前
迷路岩发布了新的文献求助10
9秒前
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
10秒前
科目三应助科研通管家采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
wure10完成签到 ,获得积分10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
12秒前
12秒前
朴素豪发布了新的文献求助10
12秒前
Ava应助蒋彪采纳,获得10
12秒前
大个应助发发采纳,获得10
13秒前
14秒前
14秒前
美满冷安发布了新的文献求助10
15秒前
无辜书南发布了新的文献求助10
15秒前
16秒前
善学以致用应助皮卡丘采纳,获得30
18秒前
19秒前
19秒前
正直美女发布了新的文献求助10
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Homolytic deamination of amino-alcohols 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3728832
求助须知:如何正确求助?哪些是违规求助? 3273843
关于积分的说明 9983753
捐赠科研通 2989158
什么是DOI,文献DOI怎么找? 1640194
邀请新用户注册赠送积分活动 779103
科研通“疑难数据库(出版商)”最低求助积分说明 747973