材料科学
表征(材料科学)
多孔性
多孔介质
流量(数学)
机制(生物学)
比例(比率)
基础(拓扑)
复合材料
化学工程
机械
石油工程
纳米技术
地质学
工程类
认识论
哲学
数学分析
物理
量子力学
数学
作者
Ke Yan,Tingting Yin,Jiannan Sun,Jun Hong,Yongsheng Zhu
出处
期刊:Materials
[MDPI AG]
日期:2021-07-13
卷期号:14 (14): 3896-3896
被引量:3
摘要
The self-lubricating effect of the porous oil-containing cage is realized by storing and releasing lubricants through its internal micro-scale pore structure. The internal flow and heat transfer process in the micron-submicron pore structure is crucial to the self-lubricating mechanism of the porous oil-containing cage. To this end, a new modeling method of porous cage was proposed based on random seeds theory, and the local two-dimensional models of porous cage with different micro-scale pore structure were established. The multiphysics coupling simulation analysis of lubricating oil inside the porous cage with the effect of centrifugal force and thermal expansion was carried out based on the COMSOL Multiphysics platform. In order to characterize the micro-scale pore structure, new structural parameter indicators, such as relative surface perimeter, effective porosity, tortuosity and fluid properties related to the internal flow process, were all extracted from the above models. Combing with the Hagen-Poiseuille equation, a flow resistance model of oil flow inside the porous oil-containing cage was obtained. Finally, comparison of simulation results and analytical solutions of the micro-scale resistance model was carried out to verify the correctness of the micro-scale resistance model. The work provides a new direction for the study of the lubrication mechanism of the porous oil-containing cage.
科研通智能强力驱动
Strongly Powered by AbleSci AI