已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Learning From Clinical Consensus Diagnosis in India to Facilitate Automatic Classification of Dementia: Machine Learning Study

痴呆 医学诊断 科恩卡帕 机器学习 医学 接收机工作特性 人工智能 卡帕 临床痴呆评级 病理 计算机科学 语言学 哲学 疾病
作者
Haomiao Jin,Sandy Chien,Erik Meijer,Pranali Khobragade,Jinkook Lee
出处
期刊:JMIR mental health [JMIR Publications Inc.]
卷期号:8 (5): e27113-e27113 被引量:8
标识
DOI:10.2196/27113
摘要

Background The Harmonized Diagnostic Assessment of Dementia for the Longitudinal Aging Study in India (LASI-DAD) is the first and only nationally representative study on late-life cognition and dementia in India (n=4096). LASI-DAD obtained clinical consensus diagnosis of dementia for a subsample of 2528 respondents. Objective This study develops a machine learning model that uses data from the clinical consensus diagnosis in LASI-DAD to support the classification of dementia status. Methods Clinicians were presented with the extensive data collected from LASI-DAD, including sociodemographic information and health history of respondents, results from the screening tests of cognitive status, and information obtained from informant interviews. Based on the Clinical Dementia Rating (CDR) and using an online platform, clinicians individually evaluated each case and then reached a consensus diagnosis. A 2-step procedure was implemented to train several candidate machine learning models, which were evaluated using a separate test set for predictive accuracy measurement, including the area under receiver operating curve (AUROC), accuracy, sensitivity, specificity, precision, F1 score, and kappa statistic. The ultimate model was selected based on overall agreement as measured by kappa. We further examined the overall accuracy and agreement with the final consensus diagnoses between the selected machine learning model and individual clinicians who participated in the clinical consensus diagnostic process. Finally, we applied the selected model to a subgroup of LASI-DAD participants for whom the clinical consensus diagnosis was not obtained to predict their dementia status. Results Among the 2528 individuals who received clinical consensus diagnosis, 192 (6.7% after adjusting for sampling weight) were diagnosed with dementia. All candidate machine learning models achieved outstanding discriminative ability, as indicated by AUROC >.90, and had similar accuracy and specificity (both around 0.95). The support vector machine model outperformed other models with the highest sensitivity (0.81), F1 score (0.72), and kappa (.70, indicating substantial agreement) and the second highest precision (0.65). As a result, the support vector machine was selected as the ultimate model. Further examination revealed that overall accuracy and agreement were similar between the selected model and individual clinicians. Application of the prediction model on 1568 individuals without clinical consensus diagnosis classified 127 individuals as living with dementia. After applying sampling weight, we can estimate the prevalence of dementia in the population as 7.4%. Conclusions The selected machine learning model has outstanding discriminative ability and substantial agreement with a clinical consensus diagnosis of dementia. The model can serve as a computer model of the clinical knowledge and experience encoded in the clinical consensus diagnostic process and has many potential applications, including predicting missed dementia diagnoses and serving as a clinical decision support tool or virtual rater to assist diagnosis of dementia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单完成签到 ,获得积分10
1秒前
asd发布了新的文献求助10
3秒前
Polymer72应助Xinyu_Liu采纳,获得10
4秒前
默幻弦完成签到,获得积分10
7秒前
瘦瘦冬寒完成签到 ,获得积分10
9秒前
9秒前
大气颜演发布了新的文献求助30
10秒前
10秒前
12秒前
galaxy完成签到,获得积分10
16秒前
风中冰香发布了新的文献求助10
17秒前
星辰大海应助lvzhechen采纳,获得10
18秒前
搜集达人应助kelsey1015采纳,获得10
18秒前
大气颜演完成签到,获得积分20
19秒前
21秒前
扶摇完成签到 ,获得积分10
25秒前
26秒前
荣耀发布了新的文献求助10
26秒前
fengfenghao发布了新的文献求助200
29秒前
科目三应助舒服的觅夏采纳,获得10
29秒前
等待的问夏完成签到 ,获得积分10
30秒前
科研通AI2S应助kejianhao8采纳,获得10
32秒前
爆米花应助匡吉六个日采纳,获得10
34秒前
完美世界应助荣耀采纳,获得10
37秒前
38秒前
39秒前
39秒前
JamesPei应助默默的无敌采纳,获得10
40秒前
asd发布了新的文献求助10
40秒前
苗条的小蜜蜂完成签到 ,获得积分10
43秒前
46秒前
asd关闭了asd文献求助
49秒前
50秒前
希望天下0贩的0应助zipi采纳,获得10
51秒前
53秒前
qiandi完成签到,获得积分10
55秒前
cocolu应助来自三百采纳,获得10
55秒前
不配.应助来自三百采纳,获得10
55秒前
顾矜应助cc采纳,获得10
57秒前
long完成签到,获得积分10
1分钟前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330276
求助须知:如何正确求助?哪些是违规求助? 2959850
关于积分的说明 8597504
捐赠科研通 2638376
什么是DOI,文献DOI怎么找? 1444303
科研通“疑难数据库(出版商)”最低求助积分说明 669096
邀请新用户注册赠送积分活动 656628