Accurate classification of Listeria species by MALDI-TOF mass spectrometry incorporating denoising autoencoder and machine learning

李斯特菌 单核细胞增生李斯特菌 人工智能 支持向量机 计算机科学 自编码 鉴定(生物学) 质谱法 模式识别(心理学) 机器学习 计算生物学 生物 化学 细菌 深度学习 色谱法 植物 遗传学
作者
Yunhong Li,Zeyu Gan,Xijie Zhou,Zhiwei Chen
出处
期刊:Journal of Microbiological Methods [Elsevier BV]
卷期号:192: 106378-106378 被引量:24
标识
DOI:10.1016/j.mimet.2021.106378
摘要

Listeria monocytogenes belongs to the category of facultative anaerobic bacteria, and is the pathogen of listeriosis, potentially lethal disease for humans. There are many similarities between L. monocytogenes and other non-pathogenic Listeria species, which causes great difficulties for their correct identification. The level of L. monocytogenes contamination in food remains high according to statistics from the Food and Drug Administration. This situation leads to food recall and destruction, which has caused huge economic losses to the food industry. Therefore, the identification of Listeria species is very important for clinical treatment and food safety. This work aims to explore an efficient classification algorithm which could easily and reliably distinguish Listeria species. We attempted to classify Listeria species by incorporating denoising autoencoder (DAE) and machine learning algorithms in matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). In addition, convolutional neural networks were used to map the high dimensional original mass spectrometry data to low dimensional core features. By analyzing MALDI-TOF MS data via incorporating DAE and support vector machine (SVM), the identification accuracy of Listeria species was 100%. The proposed classification algorithm is fast (range of seconds), easy to handle, and, more importantly, this method also allows for extending the identification scope of bacteria. The DAE model used in our research is an effective tool for the extraction of MALDI-TOF mass spectrometry features. Despite the fact that the MALDI-TOF MS dataset examined in our research had high dimensionality, the DAE + SVM algorithm was still able to exploit the hidden information embedded in the original MALDI-TOF mass spectra. The experimental results in our work demonstrated that MALDI-TOF mass spectrum combined with DAE + SVM could easily and reliably distinguish Listeria species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无限猕猴桃应助燕晓啸采纳,获得50
1秒前
烂漫人达完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
14秒前
乔杰完成签到 ,获得积分10
14秒前
柔弱的葫芦娃完成签到 ,获得积分10
17秒前
haochi完成签到,获得积分10
20秒前
滴滴完成签到 ,获得积分10
20秒前
eternal_dreams完成签到 ,获得积分10
21秒前
golfgold完成签到,获得积分10
23秒前
zoe完成签到 ,获得积分10
24秒前
zhangsan完成签到,获得积分10
26秒前
shenglll完成签到 ,获得积分10
26秒前
依依完成签到,获得积分10
29秒前
Airport完成签到 ,获得积分10
31秒前
学术laji完成签到 ,获得积分10
40秒前
45秒前
弧光完成签到 ,获得积分0
48秒前
48秒前
Ricardo完成签到 ,获得积分10
54秒前
量子星尘发布了新的文献求助10
1分钟前
zhubin完成签到 ,获得积分10
1分钟前
caosheng完成签到 ,获得积分10
1分钟前
豆浆来点蒜泥完成签到,获得积分0
1分钟前
光亮千易完成签到,获得积分10
1分钟前
1分钟前
852应助科研通管家采纳,获得10
1分钟前
果果蕉蕉发布了新的文献求助30
1分钟前
一笑奈何完成签到,获得积分10
1分钟前
1分钟前
老唐发布了新的文献求助10
1分钟前
Ceci完成签到 ,获得积分10
1分钟前
牛八先生完成签到,获得积分10
1分钟前
喜悦的板凳完成签到 ,获得积分10
1分钟前
鸽子汤完成签到 ,获得积分10
1分钟前
1分钟前
陈尹蓝完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
发个15分的完成签到 ,获得积分10
2分钟前
XXXXH完成签到,获得积分10
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015585
求助须知:如何正确求助?哪些是违规求助? 3555572
关于积分的说明 11318138
捐赠科研通 3288762
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015