Accurate classification of Listeria species by MALDI-TOF mass spectrometry incorporating denoising autoencoder and machine learning

李斯特菌 单核细胞增生李斯特菌 人工智能 支持向量机 计算机科学 自编码 鉴定(生物学) 质谱法 模式识别(心理学) 机器学习 计算生物学 生物 化学 细菌 深度学习 色谱法 植物 遗传学
作者
Yunhong Li,Zeyu Gan,Xijie Zhou,Zhiwei Chen
出处
期刊:Journal of Microbiological Methods [Elsevier BV]
卷期号:192: 106378-106378 被引量:26
标识
DOI:10.1016/j.mimet.2021.106378
摘要

Listeria monocytogenes belongs to the category of facultative anaerobic bacteria, and is the pathogen of listeriosis, potentially lethal disease for humans. There are many similarities between L. monocytogenes and other non-pathogenic Listeria species, which causes great difficulties for their correct identification. The level of L. monocytogenes contamination in food remains high according to statistics from the Food and Drug Administration. This situation leads to food recall and destruction, which has caused huge economic losses to the food industry. Therefore, the identification of Listeria species is very important for clinical treatment and food safety. This work aims to explore an efficient classification algorithm which could easily and reliably distinguish Listeria species. We attempted to classify Listeria species by incorporating denoising autoencoder (DAE) and machine learning algorithms in matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). In addition, convolutional neural networks were used to map the high dimensional original mass spectrometry data to low dimensional core features. By analyzing MALDI-TOF MS data via incorporating DAE and support vector machine (SVM), the identification accuracy of Listeria species was 100%. The proposed classification algorithm is fast (range of seconds), easy to handle, and, more importantly, this method also allows for extending the identification scope of bacteria. The DAE model used in our research is an effective tool for the extraction of MALDI-TOF mass spectrometry features. Despite the fact that the MALDI-TOF MS dataset examined in our research had high dimensionality, the DAE + SVM algorithm was still able to exploit the hidden information embedded in the original MALDI-TOF mass spectra. The experimental results in our work demonstrated that MALDI-TOF mass spectrum combined with DAE + SVM could easily and reliably distinguish Listeria species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
刚睡醒发布了新的文献求助10
1秒前
鱼尾蓝完成签到 ,获得积分10
2秒前
2秒前
爆米花应助激情的凌晴采纳,获得30
2秒前
欢喜代萱发布了新的文献求助10
2秒前
XYZ完成签到,获得积分10
2秒前
上官若男应助xiaowang采纳,获得10
2秒前
彭于晏应助姜姜姜姜采纳,获得10
2秒前
2秒前
王博完成签到,获得积分10
3秒前
justdoit发布了新的文献求助10
3秒前
3秒前
4秒前
小茶发布了新的文献求助10
4秒前
4秒前
5秒前
大熊发布了新的文献求助10
5秒前
cmdan完成签到,获得积分10
6秒前
6秒前
情怀应助大豆终结者采纳,获得10
6秒前
nn发布了新的文献求助10
7秒前
7秒前
7秒前
Tting完成签到 ,获得积分10
7秒前
CC给CC的求助进行了留言
8秒前
8秒前
8秒前
8秒前
nini完成签到,获得积分20
9秒前
共享精神应助小小橙采纳,获得10
10秒前
DDD完成签到 ,获得积分10
10秒前
10秒前
酷波er应助挖井的人采纳,获得10
10秒前
所所应助朝朝采纳,获得10
10秒前
脑洞疼应助漂亮的念双采纳,获得10
11秒前
11秒前
yu完成签到,获得积分10
11秒前
ACCEPT发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264674
求助须知:如何正确求助?哪些是违规求助? 4424909
关于积分的说明 13774672
捐赠科研通 4300019
什么是DOI,文献DOI怎么找? 2359586
邀请新用户注册赠送积分活动 1355696
关于科研通互助平台的介绍 1316961