Accurate classification of Listeria species by MALDI-TOF mass spectrometry incorporating denoising autoencoder and machine learning

李斯特菌 单核细胞增生李斯特菌 人工智能 支持向量机 计算机科学 自编码 鉴定(生物学) 质谱法 模式识别(心理学) 机器学习 计算生物学 生物 化学 细菌 深度学习 色谱法 植物 遗传学
作者
Yunhong Li,Zeyu Gan,Xijie Zhou,Zhiwei Chen
出处
期刊:Journal of Microbiological Methods [Elsevier BV]
卷期号:192: 106378-106378 被引量:26
标识
DOI:10.1016/j.mimet.2021.106378
摘要

Listeria monocytogenes belongs to the category of facultative anaerobic bacteria, and is the pathogen of listeriosis, potentially lethal disease for humans. There are many similarities between L. monocytogenes and other non-pathogenic Listeria species, which causes great difficulties for their correct identification. The level of L. monocytogenes contamination in food remains high according to statistics from the Food and Drug Administration. This situation leads to food recall and destruction, which has caused huge economic losses to the food industry. Therefore, the identification of Listeria species is very important for clinical treatment and food safety. This work aims to explore an efficient classification algorithm which could easily and reliably distinguish Listeria species. We attempted to classify Listeria species by incorporating denoising autoencoder (DAE) and machine learning algorithms in matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). In addition, convolutional neural networks were used to map the high dimensional original mass spectrometry data to low dimensional core features. By analyzing MALDI-TOF MS data via incorporating DAE and support vector machine (SVM), the identification accuracy of Listeria species was 100%. The proposed classification algorithm is fast (range of seconds), easy to handle, and, more importantly, this method also allows for extending the identification scope of bacteria. The DAE model used in our research is an effective tool for the extraction of MALDI-TOF mass spectrometry features. Despite the fact that the MALDI-TOF MS dataset examined in our research had high dimensionality, the DAE + SVM algorithm was still able to exploit the hidden information embedded in the original MALDI-TOF mass spectra. The experimental results in our work demonstrated that MALDI-TOF mass spectrum combined with DAE + SVM could easily and reliably distinguish Listeria species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
right完成签到 ,获得积分10
1秒前
星星包完成签到 ,获得积分10
1秒前
是多少应助是我呀吼采纳,获得20
1秒前
王欣瑶完成签到 ,获得积分10
1秒前
小小完成签到,获得积分10
2秒前
zhangxinan完成签到,获得积分10
2秒前
gj2221423完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
4秒前
不来也不去完成签到 ,获得积分10
5秒前
Eber完成签到,获得积分10
6秒前
Kelly1426完成签到,获得积分10
7秒前
freeway完成签到,获得积分10
8秒前
Owen应助张张采纳,获得10
9秒前
xcgh完成签到,获得积分10
9秒前
Ha完成签到,获得积分10
9秒前
123完成签到 ,获得积分10
9秒前
CooL完成签到 ,获得积分10
10秒前
chhzz完成签到 ,获得积分10
11秒前
金子完成签到,获得积分10
11秒前
QDDYR完成签到,获得积分10
11秒前
raibow9814完成签到,获得积分10
13秒前
言非离完成签到 ,获得积分10
14秒前
花开四海完成签到 ,获得积分10
16秒前
帅气的宽完成签到 ,获得积分10
17秒前
可靠的书本完成签到,获得积分10
17秒前
浮游应助小心翼翼采纳,获得30
18秒前
称心芷天完成签到 ,获得积分20
19秒前
复杂真完成签到,获得积分10
20秒前
不回首完成签到 ,获得积分10
20秒前
wisher完成签到 ,获得积分10
21秒前
向来缘浅关注了科研通微信公众号
21秒前
量子星尘发布了新的文献求助10
22秒前
巫马寒梅完成签到,获得积分10
24秒前
dididi完成签到 ,获得积分10
25秒前
十五完成签到,获得积分10
25秒前
黄油可颂完成签到 ,获得积分10
26秒前
爱学习的小钟完成签到 ,获得积分10
27秒前
木子完成签到,获得积分10
27秒前
swordshine完成签到,获得积分0
29秒前
qin完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079744
求助须知:如何正确求助?哪些是违规求助? 4297883
关于积分的说明 13389008
捐赠科研通 4121176
什么是DOI,文献DOI怎么找? 2257046
邀请新用户注册赠送积分活动 1261338
关于科研通互助平台的介绍 1195430