已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Accurate classification of Listeria species by MALDI-TOF mass spectrometry incorporating denoising autoencoder and machine learning

李斯特菌 单核细胞增生李斯特菌 人工智能 支持向量机 计算机科学 自编码 鉴定(生物学) 质谱法 模式识别(心理学) 机器学习 计算生物学 生物 化学 细菌 深度学习 色谱法 植物 遗传学
作者
Yunhong Li,Zeyu Gan,Xijie Zhou,Zhiwei Chen
出处
期刊:Journal of Microbiological Methods [Elsevier]
卷期号:192: 106378-106378 被引量:24
标识
DOI:10.1016/j.mimet.2021.106378
摘要

Listeria monocytogenes belongs to the category of facultative anaerobic bacteria, and is the pathogen of listeriosis, potentially lethal disease for humans. There are many similarities between L. monocytogenes and other non-pathogenic Listeria species, which causes great difficulties for their correct identification. The level of L. monocytogenes contamination in food remains high according to statistics from the Food and Drug Administration. This situation leads to food recall and destruction, which has caused huge economic losses to the food industry. Therefore, the identification of Listeria species is very important for clinical treatment and food safety. This work aims to explore an efficient classification algorithm which could easily and reliably distinguish Listeria species. We attempted to classify Listeria species by incorporating denoising autoencoder (DAE) and machine learning algorithms in matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). In addition, convolutional neural networks were used to map the high dimensional original mass spectrometry data to low dimensional core features. By analyzing MALDI-TOF MS data via incorporating DAE and support vector machine (SVM), the identification accuracy of Listeria species was 100%. The proposed classification algorithm is fast (range of seconds), easy to handle, and, more importantly, this method also allows for extending the identification scope of bacteria. The DAE model used in our research is an effective tool for the extraction of MALDI-TOF mass spectrometry features. Despite the fact that the MALDI-TOF MS dataset examined in our research had high dimensionality, the DAE + SVM algorithm was still able to exploit the hidden information embedded in the original MALDI-TOF mass spectra. The experimental results in our work demonstrated that MALDI-TOF mass spectrum combined with DAE + SVM could easily and reliably distinguish Listeria species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jianning完成签到,获得积分10
1秒前
dopdm发布了新的文献求助10
1秒前
1秒前
住在魔仙堡的鱼完成签到 ,获得积分10
1秒前
2秒前
3秒前
科研通AI5应助ad采纳,获得10
4秒前
小庄发布了新的文献求助10
4秒前
5秒前
菜饼发布了新的文献求助10
5秒前
xy完成签到 ,获得积分20
5秒前
5秒前
恒星的恒心完成签到 ,获得积分10
6秒前
FUMO218发布了新的文献求助10
6秒前
6秒前
7秒前
我是老大应助小九采纳,获得10
9秒前
Talha发布了新的文献求助10
9秒前
苗修杰完成签到,获得积分10
9秒前
小庄完成签到,获得积分10
10秒前
冷板凳完成签到,获得积分10
10秒前
东方翰发布了新的文献求助10
11秒前
原野小年发布了新的文献求助20
11秒前
安然发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
Orange应助Figbiliy采纳,获得10
13秒前
NexusExplorer应助林钟望采纳,获得10
14秒前
14秒前
艾比利发布了新的文献求助10
17秒前
17秒前
冷板凳发布了新的文献求助10
18秒前
FUMO218完成签到,获得积分10
19秒前
浦肯野应助科研通管家采纳,获得50
19秒前
MchemG应助科研通管家采纳,获得10
19秒前
李健应助科研通管家采纳,获得10
19秒前
wanci应助科研通管家采纳,获得10
19秒前
思源应助科研通管家采纳,获得10
20秒前
20秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484124
求助须知:如何正确求助?哪些是违规求助? 3073192
关于积分的说明 9130024
捐赠科研通 2764876
什么是DOI,文献DOI怎么找? 1517444
邀请新用户注册赠送积分活动 702131
科研通“疑难数据库(出版商)”最低求助积分说明 701058