亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting the effect of street environment on residents' mood states in large urban areas using machine learning and street view images

心情 感觉 心理学 建筑环境 心理健康 应用心理学 地理 社会心理学 工程类 土木工程 心理治疗师
作者
Chongxian Chen,Haiwei Li,Weijing Luo,Jiehang Xie,Jing Yao,Longfeng Wu,Yu Xia
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:816: 151605-151605 被引量:56
标识
DOI:10.1016/j.scitotenv.2021.151605
摘要

Researchers have demonstrated that the built environment is associated with mental health outcomes. However, evidence concerning the effects of street environments on mood in fast-growing Asian cities is scarce. Traditional questionnaires and interview methods are labor intensive and time consuming and pose challenges for accurately and efficiently evaluating the impact of urban-scale street environments on mood.This study aims to use street view images and machine learning methods to model the impact of street environments on mood states in a large urban area in Guangzhou, China, and to assess the effect of different street view elements on mood.A total of 199,754 street view images of Guangzhou were captured from Tencent Street View, and street elements were extracted by pyramid scene parsing network. Data on six mood state indicators (motivated, happy, positive-social emotion, focused, relaxed, and depressed) were collected from 1590 participants via an online platform called Assessing the Effects of Street Views on Mood. A machine learning approach was proposed to predict the effects of street environment on mood in large urban areas in Guangzhou. A series of statistical analyses including stepwise regression, ridge regression, and lasso regression were conducted to assess the effects of street view elements on mood.Streets in urban fringe areas were more likely to produce motivated, happy, relaxed, and focused feelings in residents than those in city center areas. Conversely, areas in the city center, a high-density built environment, were more likely to produce depressive feelings. Street view elements have different effects on the six mood states. "Road" is a robust indicator positively correlated with the "motivated" indicator and negatively correlated with the "depressed" indicator. "Sky" is negatively associated with "positive-social emotion" and "depressed" but positively associated with "motivated". "Building" is a negative predictor for the "focused" and "happy" indicator but is positively related to the "depressed" indicator, while "vegetation" and "terrain" are the variables most robustly and positively correlated with all positive moods.Our findings can help urban designers identify crucial areas of the city for optimization, and they have practical implications for urban planners seeking to build urban environments that foster better mental health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
称心的沛柔完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
菜鸡5号完成签到,获得积分10
10秒前
醉书生应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
醉书生应助科研通管家采纳,获得10
14秒前
十七发布了新的文献求助10
14秒前
15秒前
dabaopinkman发布了新的文献求助10
15秒前
MDW完成签到,获得积分20
20秒前
psyYang完成签到,获得积分10
20秒前
丘比特应助张玮采纳,获得10
23秒前
量子星尘发布了新的文献求助10
25秒前
27秒前
28秒前
28秒前
十七完成签到,获得积分20
28秒前
凯文完成签到 ,获得积分10
29秒前
31秒前
32秒前
ymbb发布了新的文献求助10
34秒前
华风发布了新的文献求助10
34秒前
保卫时光发布了新的文献求助10
34秒前
大力怜容完成签到 ,获得积分10
35秒前
乐乐发布了新的文献求助10
35秒前
drbrianlau发布了新的文献求助10
37秒前
学不完了完成签到 ,获得积分10
37秒前
量子星尘发布了新的文献求助10
37秒前
复杂不二完成签到,获得积分10
42秒前
十七关注了科研通微信公众号
42秒前
保卫时光完成签到,获得积分10
43秒前
45秒前
48秒前
支翰完成签到 ,获得积分10
49秒前
嘟嘟嘟嘟完成签到 ,获得积分10
50秒前
Nightangie完成签到,获得积分10
51秒前
张玮发布了新的文献求助10
51秒前
彭于晏应助ymbb采纳,获得10
51秒前
51秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666287
求助须知:如何正确求助?哪些是违规求助? 3225351
关于积分的说明 9762737
捐赠科研通 2935243
什么是DOI,文献DOI怎么找? 1607522
邀请新用户注册赠送积分活动 759252
科研通“疑难数据库(出版商)”最低求助积分说明 735185