Predicting the effect of street environment on residents' mood states in large urban areas using machine learning and street view images

心情 感觉 心理学 建筑环境 心理健康 应用心理学 地理 社会心理学 工程类 土木工程 心理治疗师
作者
Chongxian Chen,Haiwei Li,Weijing Luo,Jiehang Xie,Jing Yao,Longfeng Wu,Yu Xia
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:816: 151605-151605 被引量:54
标识
DOI:10.1016/j.scitotenv.2021.151605
摘要

Researchers have demonstrated that the built environment is associated with mental health outcomes. However, evidence concerning the effects of street environments on mood in fast-growing Asian cities is scarce. Traditional questionnaires and interview methods are labor intensive and time consuming and pose challenges for accurately and efficiently evaluating the impact of urban-scale street environments on mood.This study aims to use street view images and machine learning methods to model the impact of street environments on mood states in a large urban area in Guangzhou, China, and to assess the effect of different street view elements on mood.A total of 199,754 street view images of Guangzhou were captured from Tencent Street View, and street elements were extracted by pyramid scene parsing network. Data on six mood state indicators (motivated, happy, positive-social emotion, focused, relaxed, and depressed) were collected from 1590 participants via an online platform called Assessing the Effects of Street Views on Mood. A machine learning approach was proposed to predict the effects of street environment on mood in large urban areas in Guangzhou. A series of statistical analyses including stepwise regression, ridge regression, and lasso regression were conducted to assess the effects of street view elements on mood.Streets in urban fringe areas were more likely to produce motivated, happy, relaxed, and focused feelings in residents than those in city center areas. Conversely, areas in the city center, a high-density built environment, were more likely to produce depressive feelings. Street view elements have different effects on the six mood states. "Road" is a robust indicator positively correlated with the "motivated" indicator and negatively correlated with the "depressed" indicator. "Sky" is negatively associated with "positive-social emotion" and "depressed" but positively associated with "motivated". "Building" is a negative predictor for the "focused" and "happy" indicator but is positively related to the "depressed" indicator, while "vegetation" and "terrain" are the variables most robustly and positively correlated with all positive moods.Our findings can help urban designers identify crucial areas of the city for optimization, and they have practical implications for urban planners seeking to build urban environments that foster better mental health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
幸运海星完成签到,获得积分10
1秒前
开朗筮发布了新的文献求助10
2秒前
2秒前
魏你大爷发布了新的文献求助10
3秒前
xx完成签到,获得积分10
3秒前
4秒前
顾矜应助Archer采纳,获得10
6秒前
傲寒发布了新的文献求助10
7秒前
7秒前
852应助开朗筮采纳,获得10
9秒前
annnnnnd发布了新的文献求助10
10秒前
10秒前
冷傲的采枫给冷傲的采枫的求助进行了留言
11秒前
xx发布了新的文献求助10
11秒前
11秒前
汉堡包应助小马驹采纳,获得10
11秒前
whatever举报机灵的咖啡求助涉嫌违规
11秒前
Alleria发布了新的文献求助10
12秒前
苏七完成签到,获得积分10
12秒前
altman88发布了新的文献求助10
13秒前
逸风望完成签到,获得积分10
14秒前
热情越彬完成签到,获得积分20
14秒前
李健的粉丝团团长应助cyy采纳,获得10
14秒前
荣和发布了新的文献求助10
15秒前
SID完成签到,获得积分10
16秒前
18秒前
共享精神应助niu采纳,获得10
18秒前
youranzixing完成签到,获得积分10
19秒前
23秒前
柔弱的无心完成签到 ,获得积分10
23秒前
mingyue应助荣和采纳,获得10
24秒前
24秒前
番番茄完成签到,获得积分10
25秒前
mayucong完成签到,获得积分10
26秒前
27秒前
28秒前
哎哟我咧个去完成签到 ,获得积分20
29秒前
魔幻的遥发布了新的文献求助10
31秒前
Solarenergy完成签到,获得积分0
31秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262821
求助须知:如何正确求助?哪些是违规求助? 2903462
关于积分的说明 8325396
捐赠科研通 2573481
什么是DOI,文献DOI怎么找? 1398328
科研通“疑难数据库(出版商)”最低求助积分说明 654136
邀请新用户注册赠送积分活动 632686