Real-time removal of stimulation artifacts in closed-loop deep brain stimulation

刺激 工件(错误) 脑深部刺激 计算机科学 局部场电位 闭环 生物医学工程 人工智能 神经科学 医学 心理学 工程类 控制工程 病理 疾病 帕金森病
作者
Yingnan Nie,Xuanjun Guo,Xiao Li,Xinyi Geng,Yan Li,Zhaoyu Quan,Guanyu Zhu,Zixiao Yin,Jianguo Zhang,Shouyan Wang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (6): 066031-066031 被引量:17
标识
DOI:10.1088/1741-2552/ac3cc5
摘要

Objective.Closed-loop deep brain stimulation (DBS) with neural feedback has shown great potential in improving the therapeutic effect and reducing side effects. However, the amplitude of stimulation artifacts is much larger than the local field potentials, which remains a bottleneck in developing a closed-loop stimulation strategy with varied parameters.Approach.We proposed an irregular sampling method for the real-time removal of stimulation artifacts. The artifact peaks were detected by applying a threshold to the raw recordings, and the samples within the contaminated period of the stimulation pulses were excluded and replaced with the interpolation of the samples prior to and after the stimulation artifact duration. This method was evaluated with both simulation signals andin vivoclosed-loop DBS applications in Parkinsonian animal models.Main results. The irregular sampling method was able to remove the stimulation artifacts effectively with the simulation signals. The relative errors between the power spectral density of the recovered and true signals within a wide frequency band (2-150 Hz) were 2.14%, 3.93%, 7.22%, 7.97% and 6.25% for stimulation at 20 Hz, 60 Hz, 130 Hz, 180 Hz, and stimulation with variable low and high frequencies, respectively. This stimulation artifact removal method was verified in real-time closed-loop DBS applicationsin vivo, and the artifacts were effectively removed during stimulation with frequency continuously changing from 130 Hz to 1 Hz and stimulation adaptive to beta oscillations.Significance.The proposed method provides an approach for real-time removal in closed-loop DBS applications, which is effective in stimulation with low frequency, high frequency, and variable frequency. This method can facilitate the development of more advanced closed-loop DBS strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
橘子海完成签到 ,获得积分10
3秒前
黄油可颂完成签到 ,获得积分10
7秒前
世上僅有的榮光之路完成签到,获得积分0
17秒前
哈哈哈完成签到 ,获得积分10
19秒前
整齐的电源完成签到 ,获得积分10
21秒前
Mila完成签到 ,获得积分10
27秒前
dizi完成签到 ,获得积分10
28秒前
32秒前
Huzhu应助西米采纳,获得10
33秒前
圈地自萌X完成签到 ,获得积分10
35秒前
夏天完成签到,获得积分10
38秒前
科研通AI2S应助小鲤鱼本鱼采纳,获得20
41秒前
小刘爱科研完成签到,获得积分10
44秒前
易安发布了新的文献求助20
47秒前
小迷糊完成签到 ,获得积分10
47秒前
月夕完成签到 ,获得积分10
47秒前
只爱三十四画完成签到,获得积分10
49秒前
笨鸟先飞发布了新的文献求助10
50秒前
刘成完成签到,获得积分10
54秒前
mike2012完成签到 ,获得积分10
54秒前
lilac完成签到,获得积分10
55秒前
七子完成签到,获得积分10
58秒前
淡淡的宝莹完成签到,获得积分10
59秒前
zzx396完成签到,获得积分0
1分钟前
1分钟前
南桥枝完成签到 ,获得积分10
1分钟前
LiSiyi完成签到 ,获得积分10
1分钟前
Muhi完成签到,获得积分10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
1分钟前
momo应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
南宫应助科研通管家采纳,获得10
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
1111111111应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
正己化人应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
Hanoi347应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498664
求助须知:如何正确求助?哪些是违规求助? 4595831
关于积分的说明 14449958
捐赠科研通 4528777
什么是DOI,文献DOI怎么找? 2481732
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438563