Real-time removal of stimulation artifacts in closed-loop deep brain stimulation

刺激 工件(错误) 脑深部刺激 计算机科学 局部场电位 闭环 生物医学工程 人工智能 神经科学 医学 心理学 工程类 控制工程 病理 疾病 帕金森病
作者
Yingnan Nie,Xuanjun Guo,Xiao Li,Xinyi Geng,Yan Li,Zhaoyu Quan,Guanyu Zhu,Zixiao Yin,Jianguo Zhang,Shouyan Wang
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (6): 066031-066031 被引量:12
标识
DOI:10.1088/1741-2552/ac3cc5
摘要

Abstract Objective. Closed-loop deep brain stimulation (DBS) with neural feedback has shown great potential in improving the therapeutic effect and reducing side effects. However, the amplitude of stimulation artifacts is much larger than the local field potentials, which remains a bottleneck in developing a closed-loop stimulation strategy with varied parameters. Approach. We proposed an irregular sampling method for the real-time removal of stimulation artifacts. The artifact peaks were detected by applying a threshold to the raw recordings, and the samples within the contaminated period of the stimulation pulses were excluded and replaced with the interpolation of the samples prior to and after the stimulation artifact duration. This method was evaluated with both simulation signals and in vivo closed-loop DBS applications in Parkinsonian animal models. Main results . The irregular sampling method was able to remove the stimulation artifacts effectively with the simulation signals. The relative errors between the power spectral density of the recovered and true signals within a wide frequency band (2–150 Hz) were 2.14%, 3.93%, 7.22%, 7.97% and 6.25% for stimulation at 20 Hz, 60 Hz, 130 Hz, 180 Hz, and stimulation with variable low and high frequencies, respectively. This stimulation artifact removal method was verified in real-time closed-loop DBS applications in vivo , and the artifacts were effectively removed during stimulation with frequency continuously changing from 130 Hz to 1 Hz and stimulation adaptive to beta oscillations. Significance. The proposed method provides an approach for real-time removal in closed-loop DBS applications, which is effective in stimulation with low frequency, high frequency, and variable frequency. This method can facilitate the development of more advanced closed-loop DBS strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
惠惠发布了新的文献求助10
刚刚
慕青应助a1oft采纳,获得10
1秒前
叶十七完成签到,获得积分10
1秒前
汉堡包应助宇_采纳,获得10
1秒前
SciGPT应助H71000A采纳,获得10
1秒前
侦察兵发布了新的文献求助10
2秒前
自然乐松关注了科研通微信公众号
2秒前
zqfxc完成签到,获得积分10
2秒前
sumeiling完成签到,获得积分20
2秒前
朴素的鸡完成签到,获得积分20
3秒前
大七发布了新的文献求助10
3秒前
zzzq完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
请叫我风吹麦浪应助卡卡采纳,获得10
4秒前
传奇3应助起司嗯采纳,获得10
5秒前
remimazolam发布了新的文献求助10
6秒前
在水一方应助悦耳寒松采纳,获得10
6秒前
满座完成签到,获得积分10
6秒前
科研通AI2S应助coffee采纳,获得10
6秒前
7秒前
雪山飞龙发布了新的文献求助30
7秒前
科研通AI5应助phd采纳,获得10
8秒前
善学以致用应助京阿尼采纳,获得10
8秒前
Sylvia完成签到,获得积分10
8秒前
朴素的鸡发布了新的文献求助10
8秒前
SCI发布了新的文献求助10
8秒前
凹凸曼打小傻蛋完成签到 ,获得积分10
9秒前
Enoch完成签到,获得积分10
9秒前
Sara完成签到,获得积分10
9秒前
9秒前
zhuzhu发布了新的文献求助20
9秒前
YUZU发布了新的文献求助10
10秒前
10秒前
11秒前
shirleeyeahe完成签到,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794