ITVT-06. Application of artificial intelligence and radiomics for the analysis of intraoperative ultrasound images of brain tumors

无线电技术 医学 单变量分析 弹性成像 放射科 开颅术 超声波 磁共振成像 比例危险模型 单变量 多元分析 外科 计算机科学 多元统计 机器学习 内科学
作者
Santiago Cepeda
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:23 (Supplement_6): vi229-vi229 被引量:1
标识
DOI:10.1093/neuonc/noab196.918
摘要

Abstract BACKGROUND Intraoperative ultrasound (ioUS) images of brain tumors contain information that has not yet been exploited. The present work aims to analyze images in both B-mode and strain-elastography using techniques based on artificial intelligence and radiomics. We pretend to assess the capacity for differentiating glioblastomas (GBM) from solitary brain metastases (SBM) and also to assess the ability to predict the overall survival (OS) in GBM. METHODS We performed a retrospective analysis of patients who underwent craniotomy between March 2018 to June 2020 with GBM and SBM diagnoses. Cases with an ioUS study were included. In the first group of patients, an analysis based on deep learning was performed. An existing neural network (Inception V3) was used to classify tumors into GBM and SBM. The models were evaluated using the area under the curve (AUC), classification accuracy, and precision. In the second group, radiomic features from the tumor region were extracted. Radiomic features associated with OS were selected employing univariate correlations. Then, a survival analysis was conducted using Cox regression. RESULTS For the classification task, a total of 36 patients were included. 26 GBM and 10 SBM. Models were built using a total of 812 ultrasound images. For B-mode, AUC and accuracy values ranged from 0.790 to 0.943 and from 72 to 89 % respectively. For elastography, AUC and accuracy values ranged from 0.847 to 0.985 and from 79 to 95 % respectively. Sixteen patients were available for the survival analysis. A total of 52 radiomic features were extracted. Two texture features from B-mode (Conventional mean and GLZLM_SZLGE) and one texture feature from strain-elastography (GLZLM_LZHGE) were significantly associated with OS. CONCLUSIONS Automated processing of ioUS images through deep learning can generate high-precision classification algorithms. Radiomic tumor region features in B-mode and elastography appear to be significantly associated with OS in GBM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助救救孩子吧采纳,获得10
1秒前
王则前发布了新的文献求助10
1秒前
勤奋帅帅完成签到,获得积分10
3秒前
鹿子完成签到 ,获得积分10
3秒前
幽默的问梅完成签到,获得积分10
5秒前
研研研完成签到,获得积分10
5秒前
11秒前
11秒前
11秒前
HIBARRA发布了新的文献求助10
12秒前
13秒前
天天快乐应助玖月采纳,获得10
14秒前
李李发布了新的文献求助10
15秒前
15秒前
_是小满发布了新的文献求助10
16秒前
ke发布了新的文献求助10
16秒前
时之砂发布了新的文献求助10
17秒前
丘比特应助白糖采纳,获得10
17秒前
18秒前
完美世界应助姜少采纳,获得30
18秒前
田様应助ericzhouxx采纳,获得10
18秒前
19秒前
木槿发布了新的文献求助10
20秒前
22秒前
李李完成签到,获得积分10
23秒前
23秒前
ke完成签到,获得积分20
23秒前
ericzhouxx发布了新的文献求助10
23秒前
25秒前
传奇3应助糊涂的绿茶采纳,获得10
25秒前
Lucas应助壮观的芮采纳,获得10
26秒前
27秒前
白糖发布了新的文献求助10
29秒前
罗密欧与傅里叶完成签到,获得积分10
30秒前
范式关注了科研通微信公众号
31秒前
时之砂完成签到,获得积分10
33秒前
33秒前
33秒前
小二郎应助感动水杯采纳,获得10
34秒前
白糖完成签到,获得积分10
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458976
求助须知:如何正确求助?哪些是违规求助? 3053650
关于积分的说明 9037422
捐赠科研通 2742859
什么是DOI,文献DOI怎么找? 1504561
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694589