ITVT-06. Application of artificial intelligence and radiomics for the analysis of intraoperative ultrasound images of brain tumors

无线电技术 医学 单变量分析 弹性成像 放射科 开颅术 超声波 磁共振成像 比例危险模型 单变量 多元分析 外科 计算机科学 多元统计 机器学习 内科学
作者
Santiago Cepeda
出处
期刊:Neuro-oncology [Oxford University Press]
卷期号:23 (Supplement_6): vi229-vi229 被引量:1
标识
DOI:10.1093/neuonc/noab196.918
摘要

Abstract BACKGROUND Intraoperative ultrasound (ioUS) images of brain tumors contain information that has not yet been exploited. The present work aims to analyze images in both B-mode and strain-elastography using techniques based on artificial intelligence and radiomics. We pretend to assess the capacity for differentiating glioblastomas (GBM) from solitary brain metastases (SBM) and also to assess the ability to predict the overall survival (OS) in GBM. METHODS We performed a retrospective analysis of patients who underwent craniotomy between March 2018 to June 2020 with GBM and SBM diagnoses. Cases with an ioUS study were included. In the first group of patients, an analysis based on deep learning was performed. An existing neural network (Inception V3) was used to classify tumors into GBM and SBM. The models were evaluated using the area under the curve (AUC), classification accuracy, and precision. In the second group, radiomic features from the tumor region were extracted. Radiomic features associated with OS were selected employing univariate correlations. Then, a survival analysis was conducted using Cox regression. RESULTS For the classification task, a total of 36 patients were included. 26 GBM and 10 SBM. Models were built using a total of 812 ultrasound images. For B-mode, AUC and accuracy values ranged from 0.790 to 0.943 and from 72 to 89 % respectively. For elastography, AUC and accuracy values ranged from 0.847 to 0.985 and from 79 to 95 % respectively. Sixteen patients were available for the survival analysis. A total of 52 radiomic features were extracted. Two texture features from B-mode (Conventional mean and GLZLM_SZLGE) and one texture feature from strain-elastography (GLZLM_LZHGE) were significantly associated with OS. CONCLUSIONS Automated processing of ioUS images through deep learning can generate high-precision classification algorithms. Radiomic tumor region features in B-mode and elastography appear to be significantly associated with OS in GBM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三旬发布了新的文献求助10
刚刚
阿离完成签到,获得积分10
2秒前
FashionBoy应助千堆雪采纳,获得10
3秒前
4秒前
自然孤风完成签到,获得积分10
4秒前
哼哼发布了新的文献求助10
5秒前
可爱的函函应助lorieeee采纳,获得10
5秒前
哈哈哈哈哈完成签到,获得积分10
6秒前
6秒前
三愿完成签到,获得积分10
7秒前
7秒前
情怀应助carbon-dots采纳,获得10
8秒前
珍狗完成签到,获得积分20
9秒前
桌子完成签到,获得积分20
9秒前
372721759完成签到,获得积分10
10秒前
10秒前
热情的天蓝举报momowang求助涉嫌违规
11秒前
桌子发布了新的文献求助10
12秒前
13秒前
向阳葵发布了新的文献求助10
14秒前
斯文败类应助义气谷兰采纳,获得10
14秒前
15秒前
米修发布了新的文献求助30
15秒前
wanci应助老阳采纳,获得10
15秒前
15秒前
记得补充水分我的朋友完成签到 ,获得积分10
16秒前
QQ发布了新的文献求助10
16秒前
研友_85YNe8完成签到,获得积分10
18秒前
JamesPei应助Timezzz采纳,获得10
19秒前
carbon-dots发布了新的文献求助10
19秒前
千堆雪发布了新的文献求助10
20秒前
橘子法则发布了新的文献求助10
20秒前
21秒前
ljh发布了新的文献求助10
21秒前
22秒前
22秒前
伶俐的语雪完成签到,获得积分10
22秒前
852应助Kindred采纳,获得10
23秒前
思源应助自然孤风采纳,获得30
23秒前
周小笛完成签到 ,获得积分10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738003
求助须知:如何正确求助?哪些是违规求助? 3281524
关于积分的说明 10025807
捐赠科研通 2998287
什么是DOI,文献DOI怎么找? 1645171
邀请新用户注册赠送积分活动 782646
科研通“疑难数据库(出版商)”最低求助积分说明 749882