Coal gangue recognition using multichannel auditory spectrogram of hydraulic support sound in convolutional neural network

计算机科学 卷积神经网络 Softmax函数 光谱图 语音识别 特征(语言学) 模式识别(心理学) 声学 人工智能 语言学 物理 哲学
作者
Xu Chen,Shibo Wang,Houguang Liu,Jianhua Yang,Songyong Liu,Wenbo Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:33 (1): 015107-015107 被引量:18
标识
DOI:10.1088/1361-6501/ac3709
摘要

Abstract Many data-driven coal gangue recognition (CGR) methods based on the vibration or sound of collapsed coal and gangue have been proposed to achieve automatic CGR, which is important for realizing intelligent top-coal caving. However, the strong background noise and complex environment in underground coal mines render this task challenging in practical applications. Inspired by the fact that workers distinguish coal and gangue from underground noise by listening to the hydraulic support sound, we propose an auditory model based CGR method that simulates human auditory recognition by combining an auditory spectrogram with a convolutional neural network (CNN). First, we adjust the characteristic frequency (CF) distribution of the auditory peripheral model (APM) based on the spectral characteristics of collapsed sound signals from coal and gangue and then process the sound signals using the adjusted APM to obtain inferior colliculus auditory signals with multiple CFs. Subsequently, the auditory signals of all CFs are converted into gray images separately and then concatenated into a multichannel auditory spectrum (MCAS) along the channel dimension. Finally, we input the MCAS as a feature map to the two-dimensional CNN, whose convolutional layers are used to automatically extract features, and the fully connected layer and softmax layer are used to flatten features and predict the recognition result, respectively. The CNN is optimized for the CGR based on a comparison study of four typical types of CNN structures with different network training hyperparameters. The experimental results show that this method affords an accurate CGR with a recognition accuracy of 99.5%. Moreover, this method offers excellent noise immunity compared with typically used CGR methods under various noisy conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cjy发布了新的文献求助10
4秒前
深情安青应助daiyu采纳,获得10
5秒前
6秒前
oceanao举报尼姑拉斯娃求助涉嫌违规
7秒前
勤劳的芫完成签到,获得积分10
7秒前
小马甲应助化学兔八哥采纳,获得10
7秒前
云朵上的鱼完成签到,获得积分10
8秒前
123关闭了123文献求助
11秒前
Liza完成签到,获得积分10
11秒前
11秒前
合适的不言应助wdd采纳,获得10
13秒前
大个应助阔达尔芙采纳,获得10
15秒前
星辰大海应助YIN采纳,获得10
15秒前
up发布了新的文献求助30
16秒前
oceanao应助来日方长采纳,获得10
17秒前
仇丹秋完成签到,获得积分10
18秒前
勤劳的芫发布了新的文献求助10
19秒前
19秒前
20秒前
21秒前
23秒前
赘婿应助褪山海采纳,获得10
23秒前
25秒前
26秒前
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
爆米花应助科研通管家采纳,获得10
26秒前
奋斗枫应助科研通管家采纳,获得10
26秒前
酷波er应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
天天快乐应助科研通管家采纳,获得30
27秒前
GEOPYJ应助科研通管家采纳,获得10
27秒前
汉堡包应助科研通管家采纳,获得10
27秒前
在水一方应助科研通管家采纳,获得10
27秒前
桐桐应助科研通管家采纳,获得10
27秒前
子车茗应助科研通管家采纳,获得10
27秒前
英俊的铭应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
28秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164253
求助须知:如何正确求助?哪些是违规求助? 2814985
关于积分的说明 7907327
捐赠科研通 2474608
什么是DOI,文献DOI怎么找? 1317573
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228