The Bonferroni mean-type pre-aggregation operators construction and generalization: Application to edge detection

单调函数 操作员(生物学) 二元分析 一般化 图像(数学) 计算机科学 功能(生物学) 类型(生物学) 领域(数学分析) 边缘检测 数学 算法 人工智能 图像处理 模式识别(心理学) 数学优化 机器学习 转录因子 生物 基因 进化生物学 数学分析 抑制因子 生物化学 化学 生态学
作者
Swati Rani Hait,Radko Mesiar,Pragya Gupta,Debatosh Guha,Debjani Chakraborty
出处
期刊:Information Fusion [Elsevier BV]
卷期号:80: 226-240 被引量:11
标识
DOI:10.1016/j.inffus.2021.11.002
摘要

In recent years, immense interest in the exploration of the generalized version of the monotonicity condition has been significantly accomplished by the researchers. The intention behind generalizing the monotonicity condition is to envelop many prime functions which are of huge interest in the domain of mathematical applications such as classification problems, image processing, decision-making systems, etc. In this regard, the framework of the pre-aggregation operators was introduced to generalize the notion of monotonicity in the traditionally defined concept of aggregation operators. Such functions have extended the group of operators utilized for information accumulation by considering directional monotonicity with respect to a specified vector. This study emphasizes the systematized exploration of the theoretical framework of the Bonferroni mean-type (BM-type) pre-aggregation operators. We propose the construction methodology of the BM-type pre-aggregation operators by suitably befitting preferable functions to provide a descriptive arrangement, which is quite adaptable, understandable, and interpretable. First, a construction mechanism is proposed by utilizing a bivariate function M. To enhance the potentiality of the proposed operator, a generalized variation of it has been proposed by suitably using two functions M and M∗, respectively. The primary step for an object recognition problem is edge detection and is considered as an important tool in image processing systems. For the applicatory purpose, an edge detection algorithm based on the proposed BM-type pre-aggregation operator has been presented with more emphasis given to the feature image extraction. A comprehensive comparative study has been made to assess the results obtained through the proposed edge detection algorithm with some other well-known edge detectors extensively utilized in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助邢文瑞采纳,获得10
刚刚
刚刚
Summer发布了新的文献求助20
1秒前
1秒前
3秒前
fool发布了新的文献求助10
3秒前
4秒前
Akim应助Yexidong采纳,获得10
4秒前
HHHSean发布了新的文献求助10
4秒前
宋宇骐发布了新的文献求助10
4秒前
倪斯芮完成签到 ,获得积分10
5秒前
康康发布了新的文献求助10
6秒前
yyyalles应助开朗可行采纳,获得10
6秒前
7秒前
10秒前
10秒前
奋斗大象完成签到,获得积分10
12秒前
KSAcc发布了新的文献求助20
12秒前
深情安青应助文耳东采纳,获得10
12秒前
13秒前
柯一一应助More采纳,获得10
13秒前
平淡汽车发布了新的文献求助10
13秒前
宋宇骐完成签到,获得积分10
13秒前
djy发布了新的文献求助10
14秒前
笑点低的达完成签到 ,获得积分10
14秒前
fool完成签到,获得积分10
15秒前
康康完成签到,获得积分20
15秒前
核桃核桃发布了新的文献求助10
15秒前
siriuslee99完成签到,获得积分10
16秒前
y741应助未来的闫院士采纳,获得10
17秒前
zz完成签到,获得积分10
18秒前
空空伊完成签到,获得积分10
18秒前
英俊的铭应助大意的茈采纳,获得10
18秒前
lonely完成签到,获得积分10
18秒前
可爱的函函应助vict采纳,获得10
20秒前
20秒前
20秒前
wind应助赵欣月采纳,获得10
21秒前
Akim应助阿飞采纳,获得10
22秒前
Hello应助成就的香彤采纳,获得10
23秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962866
求助须知:如何正确求助?哪些是违规求助? 3508787
关于积分的说明 11143177
捐赠科研通 3241660
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873020
科研通“疑难数据库(出版商)”最低求助积分说明 803577