Theoretical insights into the excited state processes of a novel fluorescent probe for thiophenol with large Stokes shift

激发态 硫酚 含时密度泛函理论 化学 密度泛函理论 光化学 分子内力 荧光团 荧光 猝灭(荧光) 氢原子 氢键 斯托克斯位移 化学物理 原子物理学 计算化学 分子 立体化学 有机化学 药物化学 物理 量子力学 烷基
作者
Zhangrong Lou,Jinfeng Zhao,Debin Ji
出处
期刊:Journal of Photochemistry and Photobiology A-chemistry [Elsevier]
卷期号:425: 113691-113691 被引量:3
标识
DOI:10.1016/j.jphotochem.2021.113691
摘要

• The direction in the proton transfer for FQOH has been investigated. • Fluorescence quenching mechanism for FQDNP has been explored. • The excited state processes for FQDNP responding to PhSH have been depicted. Based on a new designed hydroxylflavone-quinoline fluorophore, a novel fluorescent probe FQDNP for detecting thiophenol with large Stokes shift has been developed recently. Despite the excited state intramolecular proton transfer mechanism has been mentioned in the report, the detailed excited state processes for the compound FQOH produced by FQDNP reacting with PhSH are still ambiguous. Typically, in which direction will the proton of hydroxyl group transfer in the excited state? Oxygen or nitrogen atom, which one is more likely to interact with the proton in hydroxyl group by an intramolecular hydrogen bonding? In this work, we have explored the excited state processes of the probe detecting for thiophenol with the density functional theory (DFT) and the time-dependent density functional theory (TDDFT) methods. The calculated photo-induced changes in the optimized geometry parameters, intramolecular hydrogen bonding energies, stretching vibration frequencies, as well as the energy barriers for FQOH imply the proton of hydroxyl group is more likely to transfer to nitrogen atom rather than to oxygen atom in the S 1 state. The calculations on the probe FQDNP reveals the fluorescence is quenched by the twisting and photoinduced electron transfer process. Our calculations provide a detailed description for the excited state processes of the probe sensing to thiophenol, which is expected to be applied in designing more effective fluorescent probes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丰知然应助CO2采纳,获得10
1秒前
Zhihu完成签到,获得积分10
1秒前
feng完成签到,获得积分10
2秒前
2秒前
美丽稀完成签到,获得积分10
3秒前
PXY应助屁王采纳,获得10
3秒前
sunburst完成签到,获得积分10
3秒前
狼主完成签到 ,获得积分10
3秒前
吕亦寒完成签到,获得积分10
3秒前
junzilan发布了新的文献求助10
4秒前
ZL发布了新的文献求助10
4秒前
4秒前
亻鱼完成签到,获得积分10
4秒前
超级蘑菇完成签到 ,获得积分10
5秒前
5秒前
5秒前
congguitar完成签到,获得积分10
5秒前
6秒前
limof完成签到,获得积分20
6秒前
跳跃聪健发布了新的文献求助10
6秒前
168521kf完成签到,获得积分10
6秒前
7秒前
Avatar完成签到,获得积分10
7秒前
7秒前
小田完成签到,获得积分10
8秒前
JJJ应助大气沅采纳,获得10
8秒前
9秒前
kydd驳回了桐桐应助
9秒前
10秒前
10秒前
10秒前
英俊的铭应助洛尚采纳,获得10
10秒前
11秒前
在水一方应助Harlotte采纳,获得10
11秒前
廖天佑完成签到,获得积分0
11秒前
SweepingMonk应助梁小鑫采纳,获得10
11秒前
DTBTY完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740