Virtual-sample-based defect detection algorithm for aluminum tube surface

计算机科学 算法 卷积神经网络 样品(材料) 人工智能 集合(抽象数据类型) 人工神经网络 噪音(视频) 模式识别(心理学) 机器学习 图像(数学) 色谱法 化学 程序设计语言
作者
Ning Lang,Decheng Wang,Peng Cheng,Shanchao Zuo,Pengfei Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:32 (8): 085001-085001 被引量:5
标识
DOI:10.1088/1361-6501/abf865
摘要

Abstract A surface defect is an important factor that affects product quality. However, due to the large differences in area of different surface defects, and noise on various surfaces, defect detection is challenging. The convolutional neural network (CNN)-based methods recently developed for defect detection produced higher recognition rates than traditional methods. However, they are typically trained using a supervised learning strategy and large defect sample sets which limits the practical use of these algorithms. This study proposes a novel virtual sample generation algorithm to solve the problem of insufficient defective samples and time-consuming manual annotation in current CNN-based defect detection algorithms. Next, an improved domain-adversarial neural network is proposed, which is trained on virtual and actual datasets to achieve unsupervised learning. Considering the imbalance in actual dataset, algorithm accuracy is improved by changing the proportions of defective and non-defective samples in the virtual sample set, and this strategy is experimentally verified. The performance of the proposed algorithm is compared with several top-performing defect inspection algorithms. The experimental results show that the proposed algorithm exhibits superior performance when compared to other algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助是草莓采纳,获得10
1秒前
1秒前
1秒前
2秒前
小秋完成签到,获得积分10
2秒前
dal完成签到,获得积分20
4秒前
4秒前
爆米花应助文艺谷蓝采纳,获得10
5秒前
23lk发布了新的文献求助10
5秒前
煎蛋发布了新的文献求助10
6秒前
6秒前
kaola发布了新的文献求助10
6秒前
科目三应助无心的土豆采纳,获得10
8秒前
dal发布了新的文献求助10
8秒前
852应助一下打死七个采纳,获得10
8秒前
9秒前
10秒前
dongdong完成签到 ,获得积分10
11秒前
12秒前
cqq完成签到,获得积分10
13秒前
秋秋发布了新的文献求助10
13秒前
14秒前
17秒前
18秒前
19秒前
英俊的铭应助VeronicaChow01采纳,获得10
21秒前
26秒前
李健应助estk采纳,获得10
27秒前
penpen完成签到,获得积分10
28秒前
31秒前
32秒前
深情安青应助kaola采纳,获得10
32秒前
越野完成签到 ,获得积分10
33秒前
一下打死七个完成签到,获得积分10
35秒前
兔子发布了新的文献求助10
36秒前
36秒前
37秒前
39秒前
estk发布了新的文献求助10
40秒前
33完成签到,获得积分10
41秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999175
求助须知:如何正确求助?哪些是违规求助? 3538547
关于积分的说明 11274517
捐赠科研通 3277430
什么是DOI,文献DOI怎么找? 1807585
邀请新用户注册赠送积分活动 883948
科研通“疑难数据库(出版商)”最低求助积分说明 810080