已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Virtual-sample-based defect detection algorithm for aluminum tube surface

计算机科学 算法 卷积神经网络 样品(材料) 人工智能 集合(抽象数据类型) 人工神经网络 噪音(视频) 模式识别(心理学) 机器学习 图像(数学) 化学 色谱法 程序设计语言
作者
Ning Lang,Decheng Wang,Peng Cheng,Shanchao Zuo,Pengfei Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:32 (8): 085001-085001 被引量:5
标识
DOI:10.1088/1361-6501/abf865
摘要

Abstract A surface defect is an important factor that affects product quality. However, due to the large differences in area of different surface defects, and noise on various surfaces, defect detection is challenging. The convolutional neural network (CNN)-based methods recently developed for defect detection produced higher recognition rates than traditional methods. However, they are typically trained using a supervised learning strategy and large defect sample sets which limits the practical use of these algorithms. This study proposes a novel virtual sample generation algorithm to solve the problem of insufficient defective samples and time-consuming manual annotation in current CNN-based defect detection algorithms. Next, an improved domain-adversarial neural network is proposed, which is trained on virtual and actual datasets to achieve unsupervised learning. Considering the imbalance in actual dataset, algorithm accuracy is improved by changing the proportions of defective and non-defective samples in the virtual sample set, and this strategy is experimentally verified. The performance of the proposed algorithm is compared with several top-performing defect inspection algorithms. The experimental results show that the proposed algorithm exhibits superior performance when compared to other algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
re完成签到,获得积分10
1秒前
1秒前
haimianbaobao完成签到 ,获得积分10
3秒前
迅速的丸子关注了科研通微信公众号
6秒前
峰feng完成签到 ,获得积分10
7秒前
王俊发布了新的文献求助10
7秒前
Zeeki完成签到 ,获得积分10
11秒前
12秒前
LiuZhe发布了新的文献求助50
12秒前
13秒前
哭泣的缘郡完成签到 ,获得积分10
14秒前
SciGPT应助redbank采纳,获得10
16秒前
梁朝伟发布了新的文献求助10
26秒前
CXE发布了新的文献求助10
33秒前
34秒前
35秒前
35秒前
sky完成签到 ,获得积分10
38秒前
YH2完成签到,获得积分10
38秒前
剑八发布了新的文献求助10
40秒前
41秒前
111发布了新的文献求助10
42秒前
43秒前
43秒前
Migue应助剑八采纳,获得10
45秒前
46秒前
李爱国应助科研通管家采纳,获得10
46秒前
科目三应助科研通管家采纳,获得10
46秒前
bkagyin应助科研通管家采纳,获得10
46秒前
MROU应助科研通管家采纳,获得10
46秒前
47秒前
隔壁小黄完成签到 ,获得积分10
47秒前
肖智议发布了新的文献求助10
48秒前
CXE完成签到,获得积分10
49秒前
54秒前
JamesPei应助肖智议采纳,获得10
54秒前
AAAADiao完成签到 ,获得积分10
1分钟前
1分钟前
机灵的以旋完成签到,获得积分20
1分钟前
徐勇完成签到 ,获得积分10
1分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335213
求助须知:如何正确求助?哪些是违规求助? 2964446
关于积分的说明 8613702
捐赠科研通 2643316
什么是DOI,文献DOI怎么找? 1447277
科研通“疑难数据库(出版商)”最低求助积分说明 670597
邀请新用户注册赠送积分活动 658948