Aircraft Fleet Health Monitoring with Anomaly Detection Techniques

预言 异常检测 预测性维护 状态监测 计算机科学 飞机维修 自编码 可靠性工程 工作流程 鉴定(生物学) 航空 故障检测与隔离 健康管理体系 预警系统 数据挖掘 工程类 深度学习 人工智能 航空学 电信 电气工程 病理 航空航天工程 生物 数据库 执行机构 医学 替代医学 植物
作者
Luis Basora,Paloma Bry,Xavier Olivé,Floris Freeman
出处
期刊:Aerospace [Multidisciplinary Digital Publishing Institute]
卷期号:8 (4): 103-103 被引量:28
标识
DOI:10.3390/aerospace8040103
摘要

Predictive maintenance has received considerable attention in the aviation industry where costs, system availability and reliability are major concerns. In spite of recent advances, effective health monitoring and prognostics for the scheduling of condition-based maintenance operations is still very challenging. The increasing availability of maintenance and operational data along with recent progress made in machine learning has boosted the development of data-driven prognostics and health management (PHM) models. In this paper, we describe the data workflow in place at an airline for the maintenance of an aircraft system and highlight the difficulties related to a proper labelling of the health status of such systems, resulting in a poor suitability of supervised learning techniques. We focus on investigating the feasibility and the potential of semi-supervised anomaly detection methods for the health monitoring of a real aircraft system. Proposed methods are evaluated on large volumes of real sensor data from a cooling unit system on a modern wide body aircraft from a major European airline. For the sake of confidentiality, data has been anonymized and only few technical and operational details about the system had been made available. We trained several deep neural network autoencoder architectures on nominal data and used the anomaly scores to calculate a health indicator. Results suggest that high anomaly scores are correlated with identified failures in the maintenance logs. Also, some situations see an increase in the anomaly score for several flights prior to the system’s failure, which paves a natural way for early fault identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Han发布了新的文献求助10
1秒前
科目三应助LYJ采纳,获得10
1秒前
顾矜应助1111采纳,获得10
1秒前
aaa完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
槐夏2466完成签到,获得积分10
2秒前
2秒前
认真科研完成签到,获得积分10
2秒前
3秒前
何鸿成完成签到,获得积分10
4秒前
5秒前
yyyy完成签到,获得积分10
6秒前
Ava应助金金采纳,获得10
7秒前
山鬼谣不会枯死的花完成签到,获得积分10
7秒前
张凡钰关注了科研通微信公众号
7秒前
喽喽发布了新的文献求助10
8秒前
8秒前
CAOHOU应助KK采纳,获得10
9秒前
华仔应助林屿溪采纳,获得10
9秒前
da发布了新的文献求助10
12秒前
小橙子发布了新的文献求助10
12秒前
13秒前
李阳完成签到,获得积分10
13秒前
16秒前
16秒前
166完成签到,获得积分10
17秒前
李爱国应助喜汁郎采纳,获得10
18秒前
maclogos发布了新的文献求助10
18秒前
18秒前
LYJ发布了新的文献求助10
20秒前
20秒前
20秒前
22秒前
fd163c应助2534165采纳,获得10
22秒前
22秒前
Cookies发布了新的文献求助10
22秒前
22秒前
22秒前
22秒前
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979788
求助须知:如何正确求助?哪些是违规求助? 3523806
关于积分的说明 11218898
捐赠科研通 3261339
什么是DOI,文献DOI怎么找? 1800544
邀请新用户注册赠送积分活动 879177
科研通“疑难数据库(出版商)”最低求助积分说明 807182