胰岛素受体
效力
医学
糖尿病
内科学
胰岛素
内分泌学
胰岛素受体底物
基础(医学)
化学
胰岛素抵抗
生物
体外
生物化学
作者
Julie S. Moyers,Ryan J. Hansen,Jonathan W. Day,Craig D. Dickinson,Chen Zhang,Steven D. Kahl,Xiaoping Ruan,Liyun Ding,Robin M. Brown,Hana E. Baker,John M. Beals
标识
DOI:10.1210/jendso/bvab048.903
摘要
Abstract Weekly basal insulin injections may increase treatment adherence in subjects with diabetes and an appropriately engineered weekly basal insulin may reduce daily pharmacokinetic (PK)/pharmacodynamic (PD) fluctuations compared to currently available daily basal insulins. Therefore, a weekly insulin has the potential to not only ease the burden of insulin therapy, but also improve outcomes for subjects with diabetes in a real-world setting. Basal insulin Fc (BIF, LY3209590) is an insulin Fc-fusion protein in clinical testing as a once weekly treatment for type 1 and type 2 diabetes mellitus (T1DM, T2DM). BIF is comprised of a human single-chain insulin fused to a human IgG2 Fc domain through a peptide linker. The in vitro evaluation determined that BIF exhibited reduced insulin receptor (IR) potency with full agonism, selectivity against human insulin-like growth factor-1 receptor (hIGF-1R), and functional properties similar to native human insulin. The binding affinity of BIF for hIR isoform A, Ki = 25 nM (SEM = 4, n=10), and hIR isoform B, Ki = 26 nM (SEM = 4, n=10), was more than two orders of magnitude weaker than human insulin. BIF stimulated IR phosphorylation in cells with reduced potency, but full agonism, and showed a significantly faster hIR dephosphorylation profile than either human insulin or AspB10 insulin. BIF stimulated de novo lipogenesis in 3T3-L1 adipocytes and cell proliferation in SAOS-2 and H4IIE cells with at least a 70-fold reduction in potency compared to human insulin. BIF possessed markedly reduced binding and activation of hIGF-1R making definitive mitogenic measurements unattainable. In preclinical in vivo pharmacology studies using streptozotocin (STZ)-treated diabetic rats, a statistically significant decrease in blood glucose compared to vehicle-treated animals was seen 24 hours post-injection and persisted through 336 hours post-injection following a single subcutaneous administration (30 nmol/kg) of BIF. In STZ-treated rats, BIF reached a Tmax at 48 hours, possessed an apparent clearance rate of ~0.85 mL/hr/kg, and t1/2 of ~120 hrs. Collectively, these results demonstrate that BIF possesses selective IR agonism with a pharmacological profile similar to native insulin, however with a significantly reduced potency, and a significantly extended time action profile in preclinical animal models supporting once weekly testing in the clinic.
科研通智能强力驱动
Strongly Powered by AbleSci AI