Digital Holographic Microscopy for High-throughput Analysis of Tumour Cells

全息术 计算机科学 数字全息术 光学(聚焦) 数字全息显微术 吞吐量 显微镜 计算机视觉 人工智能 数字化病理学 对象(语法) 计算机图形学(图像) 光学 物理 电信 无线
作者
Tomi Pitkäaho
摘要

visible, and in time-lapse imaging, light levels can be harmful for cells. These routines can affect the behaviour of cells and introduce unwanted artefacts in the captured images. Digital holographic microscopy(DHM)enables stain-free single-shot imaging of living cells, uses low light intensities, and requires low data storage capacity. Due to advantages over many other methods, DHM is a strong candidate for high-throughput analyses. Use of DHM for imaging complex three-dimensional organoids has not been reported before. The major limitation preventing widespread-use of DHM is the lack of analysis algorithms and limitations with those that are available. There are no algorithms to detect the presence of objects encoded in digital holograms. Existing algorithms used to find the in-focus depths of objects encoded in digital holograms require multiple reconstructions that increase processing time making them unsuitable for high-throughput analyses. There are no algorithms that could be used to segment digital hologram reconstructions of biological objects to multiple distinctive regions. To the best of our knowledge, using digital hologram reconstructions for classification of cysts has not been reported before. This thesis introduces novel approaches for efficient analyses of holograms of celllines and real patient samples. By analysing and interpreting different features of organoids, cancer-specific signatures are identified. In this thesis, a number of novel contributions are reported. A model-based object presence detection approach exploiting information extracted from a CNN is reported. CNNs are trained to find in-focus depths of organoids encoded in digital holograms without any numerical propagation. Reconstructions from digital holograms of organoids are segmented to multiple discrete regions using a CNN, allowing novel quantitative analyses. Different classifiers using either extracted feature vectors or phase reconstructions are trained to discriminate healthy and tumorigenic organoids. A large-scale experiment is conducted for finding a CNN model with sufficient classification accuracy and minimum number of learning parameters;hand-crafted features are added to these shallow networks to improve the classification accuracy. Organoids derived from tissue samples of thirteen prostate cancer patients are shown to introduce additional challenges. Based on the existing data,there is an indication that prostate cancer is unique for each patient thus complicating detection of cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋枫忆完成签到,获得积分10
1秒前
拓跋箴完成签到,获得积分10
2秒前
天才小张发布了新的文献求助10
2秒前
zzhang完成签到,获得积分10
2秒前
阿嘎普莱特完成签到,获得积分10
3秒前
SigRosa完成签到,获得积分10
3秒前
3秒前
Zetlynn发布了新的文献求助20
5秒前
研友_844Ar8发布了新的文献求助10
5秒前
6秒前
领导范儿应助拓跋箴采纳,获得10
7秒前
123发布了新的文献求助10
7秒前
玉9989完成签到,获得积分10
8秒前
11完成签到,获得积分20
8秒前
安静凡旋完成签到 ,获得积分10
8秒前
夜已深完成签到,获得积分10
8秒前
zm发布了新的文献求助10
9秒前
zhouleibio完成签到,获得积分10
10秒前
稳重绿蕊完成签到 ,获得积分20
10秒前
yuanxiu完成签到,获得积分20
11秒前
Bill完成签到 ,获得积分10
12秒前
大模型应助嘟嘟采纳,获得10
12秒前
忐忑的黑猫完成签到,获得积分10
12秒前
13秒前
chloe发布了新的文献求助10
13秒前
14秒前
14秒前
Chine-Wang完成签到,获得积分10
14秒前
zhang完成签到,获得积分20
14秒前
16秒前
16秒前
cc完成签到,获得积分20
17秒前
明理的化蛹完成签到,获得积分10
17秒前
严惜完成签到,获得积分10
17秒前
小屋完成签到,获得积分10
17秒前
HNNUYanY应助俊逸的小懒猪采纳,获得10
18秒前
在水一方应助李半斤采纳,获得10
18秒前
zzz发布了新的文献求助10
18秒前
cpxliteratur完成签到,获得积分10
18秒前
任性的傲柏完成签到,获得积分10
18秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3408846
求助须知:如何正确求助?哪些是违规求助? 3012784
关于积分的说明 8855969
捐赠科研通 2700132
什么是DOI,文献DOI怎么找? 1480218
科研通“疑难数据库(出版商)”最低求助积分说明 684251
邀请新用户注册赠送积分活动 678578