Sales prediction using machine learning approaches

销售预测 需求预测 采购 销售管理 计算机科学 经济预测 回归分析 机器学习 运筹学 计量经济学 营销 业务 经济 工程类
作者
K. Saraswathi,N. T. Renukadevi,S. Nandhinidevi,S. Gayathri Devi,P Naveen
出处
期刊:Nucleation and Atmospheric Aerosols 卷期号:2387: 140038-140038 被引量:7
标识
DOI:10.1063/5.0068655
摘要

For the successful business, several factors are considered and prediction is made for the sales of the product. Here, the sales prediction is proposed to forecast the sales of Rossamann stores using machine learning algorithms. Sales forecasting is done by analyzing customer purchasing behaviour and it plays an important role in modern business intelligence. Forecasting future sales demand is key to business and business planning activities. Forecasting helps business organizations to make improvements, to make changes to business plans and to provide a stock storage solution. Forecast is determined by the use of data or information from past works and the consideration of recognized feature in future. Sales forecasting plays a vital role in strategic planning and market strategy for every company to assess past and present sales statistics and predict potential results. Overall, accurate sales forecasting helps the company to run more productively and efficiently, to save money on forecasts or predictions. In the proposed study, the linear regression and logistic regression model are analyzed and Simple Linear Regression (SLR) and Multiple Linear Regression (MLR) are trained and tested for our dataset. The data is processed to select the features and extract those features. Accurate projections make it easier for the shop to boost demand growth and a higher degree of sales generation. It produces better prediction rate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mof完成签到,获得积分10
刚刚
ding应助重要无招采纳,获得10
1秒前
2秒前
3秒前
经叫兽完成签到 ,获得积分10
3秒前
南冥完成签到 ,获得积分10
3秒前
zsy1234发布了新的文献求助10
4秒前
5秒前
朱成豪发布了新的文献求助10
7秒前
zjj115完成签到 ,获得积分10
8秒前
接accept发布了新的文献求助10
8秒前
健壮笑阳完成签到 ,获得积分10
8秒前
9秒前
10秒前
瓷儿发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
暴走火箭筒完成签到,获得积分10
12秒前
cc完成签到 ,获得积分10
13秒前
14秒前
14秒前
15秒前
呆呆不瓜完成签到,获得积分10
15秒前
16秒前
16秒前
斯文败类应助酥酥采纳,获得10
16秒前
Lric发布了新的文献求助10
17秒前
18秒前
19秒前
20秒前
重要无招发布了新的文献求助10
20秒前
皮皮猫发布了新的文献求助10
20秒前
22秒前
22秒前
22秒前
zsy1234完成签到,获得积分10
22秒前
23秒前
哭泣的擎汉完成签到,获得积分10
25秒前
科研通AI5应助优雅的箴采纳,获得10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526155
求助须知:如何正确求助?哪些是违规求助? 3106527
关于积分的说明 9280871
捐赠科研通 2804159
什么是DOI,文献DOI怎么找? 1539302
邀请新用户注册赠送积分活动 716522
科研通“疑难数据库(出版商)”最低求助积分说明 709495