亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LTGH: A Dynamic Texture Feature for Working Condition Recognition in the Froth Flotation

人工智能 直方图 计算机视觉 特征(语言学) 局部二进制模式 计算机科学 模式识别(心理学) 稳健性(进化) 纹理(宇宙学) 定向梯度直方图 特征提取 图像纹理 不变(物理) 图像处理 图像(数学) 数学 数学物理 哲学 语言学 生物化学 化学 基因
作者
Jin Luo,Zhaohui Tang,Hu Zhang,Ying Fan,Yongfang Xie
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-10 被引量:29
标识
DOI:10.1109/tim.2021.3065417
摘要

Texture feature of the froth image is widely used in the working condition recognition of froth flotation. However, due to the complexity of the froth image, the current texture features vary greatly and are difficult to identify the work condition accurately. Therefore, we propose a dynamic texture feature named LBP on the TOP and GLCM Histograms (LTGH) which integrates the local binary patterns (LBPs) and gray-level co-occurrence matrix (GLCM) histograms on the three orthogonal planes (TOP). First, we use the rotation invariant LBPs to enhance rotation invariance and illumination robustness. Then, we implement the TOP on the enhanced texture feature map to generate the multiple dimensional enhanced feature maps. After that, we calculate the GLCM and supplementary features (SFs) on the multiple dimensional enhanced feature map. Finally, we integrate the histogram of the GLCM and SFs to discriminate the texture feature. The LTGH feature considers the froth structures both in the macrolevel and microlevel and captures the temporal information between the froth images. Experiments have demonstrated the effectiveness and stability of the proposed texture feature for work condition recognition in froth flotation. Compared with other traditional texture features, the accuracy of the LTGH feature has been increased by at least 7.76%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
幽默平安发布了新的文献求助10
10秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
1分钟前
2分钟前
2分钟前
小禾一定行完成签到 ,获得积分10
2分钟前
inkoin发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
inkoin完成签到,获得积分10
3分钟前
3分钟前
积极的台灯应助Akitten采纳,获得10
3分钟前
隐形曼青应助务实书包采纳,获得10
3分钟前
3分钟前
4分钟前
爱思考的小笨笨完成签到,获得积分10
4分钟前
GingerF应助科研通管家采纳,获得50
4分钟前
GingerF应助科研通管家采纳,获得50
4分钟前
上官若男应助闫雪采纳,获得10
5分钟前
5分钟前
5分钟前
Akitten发布了新的文献求助10
5分钟前
5分钟前
大写的LV完成签到 ,获得积分10
5分钟前
ffff完成签到 ,获得积分10
6分钟前
zsmj23完成签到 ,获得积分0
6分钟前
Owen应助科研通管家采纳,获得10
6分钟前
Owen应助hongtao采纳,获得10
7分钟前
7分钟前
哈哈哈完成签到 ,获得积分10
7分钟前
8分钟前
liu完成签到 ,获得积分10
8分钟前
33发布了新的文献求助10
8分钟前
8分钟前
阿金啊发布了新的文献求助10
8分钟前
科研通AI2S应助Cong采纳,获得10
8分钟前
科目三应助科研通管家采纳,获得10
8分钟前
8分钟前
8分钟前
务实书包发布了新的文献求助10
9分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990219
求助须知:如何正确求助?哪些是违规求助? 3532146
关于积分的说明 11256472
捐赠科研通 3271042
什么是DOI,文献DOI怎么找? 1805190
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234