Intelligent autonomous street lighting system based on weather forecast using LSTM

能源消耗 汽车工程 能量(信号处理) 智能照明 计算机科学 环境科学 模拟 实时计算 太阳能 气象学 建筑工程 工程类 电气工程 数学 统计 物理
作者
Didar Tukymbekov,Ahmet Saymbetov,Madiyar Nurgaliyev,Nurzhigit Kuttybay,Gulbakhar Dosymbetova,Yeldos Svanbayev
出处
期刊:Energy [Elsevier]
卷期号:231: 120902-120902 被引量:22
标识
DOI:10.1016/j.energy.2021.120902
摘要

Existing traditional street lighting systems are characterized by a high level of energy consumption compared to automated intelligent systems that offer different operating modes depending on traffic and power system load. The most promising energy sources systems are hybrid installations that switch the load to the grid in adverse weather conditions. Such systems may increase the energy efficiency of the street lighting system, but they are not completely autonomous. In this case, the most important problem is to provide the street lighting system with energy in adverse weather conditions. In this paper, an autonomous street lighting system with adaptive energy consumption based on weather forecast was shown. The proposed street lighting system is completely independent of traditional power sources and is completely powered by solar panels. The main energy consumers of a street lighting system are lamps. The consumption of lamps can be changed to the minimum brightness level required by outdoor lighting standards. Forecasts of energy generation by solar panels can be obtained using LSTM. It is based on weather and solar radiation forecasts data for the coming days. The brightness levels of lamps are calculated and changed using the methods proposed in this paper. The probability of reaching the critical level of batteries does not exceed 0.10% and fluctuates around 0.05% most of the time when simulating for 1000 days under random weather conditions. Simulation of energy consumption by the street lighting system using the proposed method shows stable and sustainable performance in Almaty, Kazakhstan. The obtained results in this work can be used for designing autonomous street lighting and outdoor lighting systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助随波逐流采纳,获得10
1秒前
1秒前
2秒前
3秒前
elve发布了新的文献求助10
5秒前
5秒前
7秒前
7秒前
7秒前
愉快彩虹完成签到,获得积分10
8秒前
ranqi完成签到,获得积分10
8秒前
8秒前
晓Wu发布了新的文献求助30
9秒前
Yukwah完成签到,获得积分10
11秒前
HHN发布了新的文献求助10
11秒前
Longbin李发布了新的文献求助10
13秒前
Yukwah发布了新的文献求助10
13秒前
机智的长颈鹿完成签到,获得积分10
13秒前
科研韭菜完成签到,获得积分10
13秒前
随波逐流发布了新的文献求助10
14秒前
zz完成签到 ,获得积分20
14秒前
李子木发布了新的文献求助10
14秒前
123完成签到,获得积分10
15秒前
科研通AI2S应助傢誠采纳,获得10
15秒前
ppp完成签到,获得积分10
17秒前
cleva完成签到,获得积分10
18秒前
18秒前
指哪打哪完成签到,获得积分10
20秒前
Quier完成签到,获得积分10
20秒前
求文发布了新的文献求助10
21秒前
22秒前
勤奋花瓣完成签到,获得积分10
22秒前
DLDL完成签到,获得积分10
23秒前
李子木完成签到,获得积分10
23秒前
elve发布了新的文献求助10
23秒前
24秒前
晓Wu完成签到,获得积分10
25秒前
一只小可爱完成签到,获得积分10
26秒前
29秒前
彭于晏应助畅快访蕊采纳,获得10
30秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137977
求助须知:如何正确求助?哪些是违规求助? 2788926
关于积分的说明 7789136
捐赠科研通 2445326
什么是DOI,文献DOI怎么找? 1300288
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046