Physics-Informed Deep Learning for Computational Elastodynamics without Labeled Data

有限元法 偏微分方程 计算机科学 物理定律 突出 应用数学 常微分方程 数学 人工神经网络 人工智能 物理 微分方程 数学分析 量子力学 热力学
作者
Chengping Rao,Hao Sun,Yang Liu
出处
期刊:Journal of Engineering Mechanics-asce [American Society of Civil Engineers]
卷期号:147 (8) 被引量:241
标识
DOI:10.1061/(asce)em.1943-7889.0001947
摘要

Numerical methods such as finite element have been flourishing in the past decades for modeling solid mechanics problems via solving governing partial differential equations (PDEs). A salient aspect that distinguishes these numerical methods is how they approximate the physical fields of interest. Physics-informed deep learning (PIDL) is a novel approach developed in recent years for modeling PDE solutions and shows promise to solve computational mechanics problems without using any labeled data (e.g., measurement data is unavailable). The philosophy behind it is to approximate the quantity of interest (e.g., PDE solution variables) by a deep neural network (DNN) and embed the physical law to regularize the network. To this end, training the network is equivalent to minimization of a well-designed loss function that contains the residuals of the governing PDEs as well as initial/boundary conditions (I/BCs). In this paper, we present a physics-informed neural network (PINN) with mixed-variable output to model elastodynamics problems without resort to the labeled data, in which the I/BCs are forcibly imposed. In particular, both the displacement and stress components are taken as the DNN output, inspired by the hybrid finite-element analysis, which largely improves the accuracy and the trainability of the network. Since the conventional PINN framework augments all the residual loss components in a soft manner with Lagrange multipliers, the weakly imposed I/BCs may not be well satisfied especially when complex I/BCs are present. To overcome this issue, a composite scheme of DNNs is established based on multiple single DNNs such that the I/BCs can be satisfied forcibly in a forcible manner. The proposed PINN framework is demonstrated on several numerical elasticity examples with different I/BCs, including both static and dynamic problems as well as wave propagation in truncated domains. Results show the promise of PINN in the context of computational mechanics applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助危机的菠萝采纳,获得30
刚刚
1秒前
麻花发布了新的文献求助10
1秒前
1秒前
猪猪侠完成签到,获得积分10
2秒前
该饮茶了发布了新的文献求助10
2秒前
3秒前
Avery发布了新的文献求助10
3秒前
Hello应助emm采纳,获得10
3秒前
4秒前
桐桐应助初学者采纳,获得10
5秒前
大气如雪完成签到,获得积分20
5秒前
动静结合发布了新的文献求助10
5秒前
夏木子完成签到,获得积分20
5秒前
漫天繁星发布了新的文献求助10
6秒前
Dr_Stars发布了新的文献求助10
6秒前
补药学习完成签到,获得积分10
6秒前
热心梦山发布了新的文献求助10
7秒前
郭子仪完成签到,获得积分10
7秒前
流北爷发布了新的文献求助10
7秒前
斯文千亦完成签到,获得积分10
7秒前
林珍发布了新的文献求助10
7秒前
苦哈哈发布了新的文献求助10
7秒前
8秒前
今后应助he采纳,获得10
8秒前
8秒前
我是老大应助不忘初心采纳,获得10
9秒前
9秒前
9秒前
9秒前
Ava应助BaBa采纳,获得10
10秒前
11秒前
Ava应助夜阑风静采纳,获得10
11秒前
11秒前
12秒前
12秒前
12秒前
12秒前
12秒前
ZYYYY完成签到,获得积分20
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978852
求助须知:如何正确求助?哪些是违规求助? 3522781
关于积分的说明 11214876
捐赠科研通 3260258
什么是DOI,文献DOI怎么找? 1799853
邀请新用户注册赠送积分活动 878711
科研通“疑难数据库(出版商)”最低求助积分说明 807059