Physics-Informed Deep Learning for Computational Elastodynamics without Labeled Data

有限元法 偏微分方程 计算机科学 物理定律 突出 应用数学 常微分方程 数学 人工神经网络 人工智能 物理 微分方程 数学分析 量子力学 热力学
作者
Chengping Rao,Hao Sun,Yang Liu
出处
期刊:Journal of Engineering Mechanics-asce [American Society of Civil Engineers]
卷期号:147 (8) 被引量:241
标识
DOI:10.1061/(asce)em.1943-7889.0001947
摘要

Numerical methods such as finite element have been flourishing in the past decades for modeling solid mechanics problems via solving governing partial differential equations (PDEs). A salient aspect that distinguishes these numerical methods is how they approximate the physical fields of interest. Physics-informed deep learning (PIDL) is a novel approach developed in recent years for modeling PDE solutions and shows promise to solve computational mechanics problems without using any labeled data (e.g., measurement data is unavailable). The philosophy behind it is to approximate the quantity of interest (e.g., PDE solution variables) by a deep neural network (DNN) and embed the physical law to regularize the network. To this end, training the network is equivalent to minimization of a well-designed loss function that contains the residuals of the governing PDEs as well as initial/boundary conditions (I/BCs). In this paper, we present a physics-informed neural network (PINN) with mixed-variable output to model elastodynamics problems without resort to the labeled data, in which the I/BCs are forcibly imposed. In particular, both the displacement and stress components are taken as the DNN output, inspired by the hybrid finite-element analysis, which largely improves the accuracy and the trainability of the network. Since the conventional PINN framework augments all the residual loss components in a soft manner with Lagrange multipliers, the weakly imposed I/BCs may not be well satisfied especially when complex I/BCs are present. To overcome this issue, a composite scheme of DNNs is established based on multiple single DNNs such that the I/BCs can be satisfied forcibly in a forcible manner. The proposed PINN framework is demonstrated on several numerical elasticity examples with different I/BCs, including both static and dynamic problems as well as wave propagation in truncated domains. Results show the promise of PINN in the context of computational mechanics applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天天快乐应助纳川采纳,获得10
1秒前
YIN完成签到 ,获得积分10
1秒前
火星上夏云完成签到,获得积分10
2秒前
2秒前
花火发布了新的文献求助10
2秒前
路过你的夏完成签到 ,获得积分10
2秒前
lizli2009发布了新的文献求助10
2秒前
静oo完成签到,获得积分10
3秒前
大气的含烟完成签到 ,获得积分10
4秒前
小二郎应助jiahao采纳,获得10
4秒前
善学以致用应助隆中对采纳,获得10
4秒前
月光完成签到 ,获得积分10
4秒前
SciGPT应助云宝采纳,获得10
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助30
7秒前
7秒前
李爱国应助强健的糖豆采纳,获得10
8秒前
9秒前
乐观的小馒头完成签到,获得积分10
9秒前
谭续燊完成签到,获得积分10
9秒前
10秒前
MathCheck发布了新的文献求助30
10秒前
深情安青应助May采纳,获得20
10秒前
爱上学的小金完成签到,获得积分10
11秒前
打打应助GAOBIN000采纳,获得10
11秒前
细心行云完成签到,获得积分10
12秒前
ding应助液体剑0932采纳,获得10
12秒前
zhaochenxi完成签到,获得积分10
12秒前
12秒前
打打应助奶奶的龙采纳,获得10
12秒前
执着绿草发布了新的文献求助10
12秒前
13秒前
lll完成签到 ,获得积分10
13秒前
su发布了新的文献求助10
13秒前
14秒前
zzzzzz完成签到,获得积分10
14秒前
14秒前
AMZX发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728317
求助须知:如何正确求助?哪些是违规求助? 5312368
关于积分的说明 15313794
捐赠科研通 4875546
什么是DOI,文献DOI怎么找? 2618882
邀请新用户注册赠送积分活动 1568431
关于科研通互助平台的介绍 1525095