Physics-Informed Deep Learning for Computational Elastodynamics without Labeled Data

有限元法 偏微分方程 计算机科学 物理定律 突出 应用数学 常微分方程 数学 人工神经网络 人工智能 物理 微分方程 数学分析 量子力学 热力学
作者
Chengping Rao,Hao Sun,Yang Liu
出处
期刊:Journal of Engineering Mechanics-asce [American Society of Civil Engineers]
卷期号:147 (8) 被引量:241
标识
DOI:10.1061/(asce)em.1943-7889.0001947
摘要

Numerical methods such as finite element have been flourishing in the past decades for modeling solid mechanics problems via solving governing partial differential equations (PDEs). A salient aspect that distinguishes these numerical methods is how they approximate the physical fields of interest. Physics-informed deep learning (PIDL) is a novel approach developed in recent years for modeling PDE solutions and shows promise to solve computational mechanics problems without using any labeled data (e.g., measurement data is unavailable). The philosophy behind it is to approximate the quantity of interest (e.g., PDE solution variables) by a deep neural network (DNN) and embed the physical law to regularize the network. To this end, training the network is equivalent to minimization of a well-designed loss function that contains the residuals of the governing PDEs as well as initial/boundary conditions (I/BCs). In this paper, we present a physics-informed neural network (PINN) with mixed-variable output to model elastodynamics problems without resort to the labeled data, in which the I/BCs are forcibly imposed. In particular, both the displacement and stress components are taken as the DNN output, inspired by the hybrid finite-element analysis, which largely improves the accuracy and the trainability of the network. Since the conventional PINN framework augments all the residual loss components in a soft manner with Lagrange multipliers, the weakly imposed I/BCs may not be well satisfied especially when complex I/BCs are present. To overcome this issue, a composite scheme of DNNs is established based on multiple single DNNs such that the I/BCs can be satisfied forcibly in a forcible manner. The proposed PINN framework is demonstrated on several numerical elasticity examples with different I/BCs, including both static and dynamic problems as well as wave propagation in truncated domains. Results show the promise of PINN in the context of computational mechanics applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助mcs0808采纳,获得10
刚刚
shanyuyulai完成签到 ,获得积分10
刚刚
汉堡包应助zhy采纳,获得10
1秒前
吕嫣娆完成签到 ,获得积分10
1秒前
科研通AI6应助哈哈哈采纳,获得10
1秒前
CipherSage应助司徒绮采纳,获得10
1秒前
琉璃发布了新的文献求助10
2秒前
凶狠的冰棍完成签到,获得积分10
2秒前
3秒前
3秒前
科研通AI6应助黑马王子采纳,获得10
4秒前
5秒前
5秒前
5秒前
6秒前
华仔应助131310采纳,获得30
7秒前
丘比特应助白承恩采纳,获得10
8秒前
周周发布了新的文献求助10
8秒前
8秒前
辞南发布了新的文献求助10
8秒前
10秒前
10秒前
10秒前
77完成签到,获得积分10
12秒前
领导范儿应助陶醉的开山采纳,获得10
12秒前
司徒绮发布了新的文献求助10
13秒前
小二郎应助luo采纳,获得10
14秒前
香蕉觅云应助栀紫采纳,获得10
14秒前
欣喜安蕾完成签到,获得积分10
15秒前
77发布了新的文献求助10
15秒前
Zz发布了新的文献求助10
16秒前
科研通AI6应助hahahaha采纳,获得10
16秒前
隐形曼青应助小蘑菇采纳,获得10
16秒前
17秒前
tess发布了新的文献求助10
17秒前
留胡子的之云完成签到,获得积分20
17秒前
Forever完成签到,获得积分10
17秒前
17秒前
洪雨欣完成签到,获得积分10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532370
求助须知:如何正确求助?哪些是违规求助? 4621091
关于积分的说明 14576802
捐赠科研通 4560970
什么是DOI,文献DOI怎么找? 2499032
邀请新用户注册赠送积分活动 1479026
关于科研通互助平台的介绍 1450265