Physics-Informed Deep Learning for Computational Elastodynamics without Labeled Data

有限元法 偏微分方程 计算机科学 物理定律 突出 应用数学 常微分方程 数学 人工神经网络 人工智能 物理 微分方程 数学分析 量子力学 热力学
作者
Chengping Rao,Hao Sun,Yang Liu
出处
期刊:Journal of Engineering Mechanics-asce [American Society of Civil Engineers]
卷期号:147 (8) 被引量:241
标识
DOI:10.1061/(asce)em.1943-7889.0001947
摘要

Numerical methods such as finite element have been flourishing in the past decades for modeling solid mechanics problems via solving governing partial differential equations (PDEs). A salient aspect that distinguishes these numerical methods is how they approximate the physical fields of interest. Physics-informed deep learning (PIDL) is a novel approach developed in recent years for modeling PDE solutions and shows promise to solve computational mechanics problems without using any labeled data (e.g., measurement data is unavailable). The philosophy behind it is to approximate the quantity of interest (e.g., PDE solution variables) by a deep neural network (DNN) and embed the physical law to regularize the network. To this end, training the network is equivalent to minimization of a well-designed loss function that contains the residuals of the governing PDEs as well as initial/boundary conditions (I/BCs). In this paper, we present a physics-informed neural network (PINN) with mixed-variable output to model elastodynamics problems without resort to the labeled data, in which the I/BCs are forcibly imposed. In particular, both the displacement and stress components are taken as the DNN output, inspired by the hybrid finite-element analysis, which largely improves the accuracy and the trainability of the network. Since the conventional PINN framework augments all the residual loss components in a soft manner with Lagrange multipliers, the weakly imposed I/BCs may not be well satisfied especially when complex I/BCs are present. To overcome this issue, a composite scheme of DNNs is established based on multiple single DNNs such that the I/BCs can be satisfied forcibly in a forcible manner. The proposed PINN framework is demonstrated on several numerical elasticity examples with different I/BCs, including both static and dynamic problems as well as wave propagation in truncated domains. Results show the promise of PINN in the context of computational mechanics applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哆啦十七应助勤奋的球球采纳,获得10
刚刚
1秒前
2秒前
2秒前
曲淳完成签到,获得积分10
2秒前
PMME发布了新的文献求助10
3秒前
TIANEO发布了新的文献求助10
3秒前
流云发布了新的文献求助10
3秒前
syy080837发布了新的文献求助10
3秒前
我是老大应助哇奥采纳,获得10
3秒前
科研通AI6应助苹果大娘采纳,获得10
4秒前
杨老师发布了新的文献求助10
4秒前
聪明的从梦完成签到,获得积分10
4秒前
懵懂的梦秋完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
6秒前
小蘑菇应助真陈采纳,获得10
6秒前
赘婿应助yaya采纳,获得10
6秒前
笨蛋道人发布了新的文献求助10
6秒前
虞头星星完成签到,获得积分10
6秒前
djh完成签到,获得积分10
6秒前
CodeCraft应助科研王采纳,获得10
7秒前
7秒前
8秒前
8秒前
8秒前
FashionBoy应助要减肥代双采纳,获得10
8秒前
9秒前
宫城百事顺完成签到,获得积分10
10秒前
10秒前
陈瑞发布了新的文献求助10
10秒前
SciGPT应助Simo采纳,获得10
11秒前
11秒前
Will发布了新的文献求助10
12秒前
Rjy发布了新的文献求助10
12秒前
123456发布了新的文献求助10
12秒前
12秒前
AIO发布了新的文献求助10
12秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340559
求助须知:如何正确求助?哪些是违规求助? 4476999
关于积分的说明 13933590
捐赠科研通 4372846
什么是DOI,文献DOI怎么找? 2402602
邀请新用户注册赠送积分活动 1395511
关于科研通互助平台的介绍 1367572