Physics-Informed Deep Learning for Computational Elastodynamics without Labeled Data

有限元法 偏微分方程 计算机科学 物理定律 突出 应用数学 常微分方程 数学 人工神经网络 人工智能 物理 微分方程 数学分析 量子力学 热力学
作者
Chengping Rao,Hao Sun,Yang Liu
出处
期刊:Journal of Engineering Mechanics-asce [American Society of Civil Engineers]
卷期号:147 (8) 被引量:241
标识
DOI:10.1061/(asce)em.1943-7889.0001947
摘要

Numerical methods such as finite element have been flourishing in the past decades for modeling solid mechanics problems via solving governing partial differential equations (PDEs). A salient aspect that distinguishes these numerical methods is how they approximate the physical fields of interest. Physics-informed deep learning (PIDL) is a novel approach developed in recent years for modeling PDE solutions and shows promise to solve computational mechanics problems without using any labeled data (e.g., measurement data is unavailable). The philosophy behind it is to approximate the quantity of interest (e.g., PDE solution variables) by a deep neural network (DNN) and embed the physical law to regularize the network. To this end, training the network is equivalent to minimization of a well-designed loss function that contains the residuals of the governing PDEs as well as initial/boundary conditions (I/BCs). In this paper, we present a physics-informed neural network (PINN) with mixed-variable output to model elastodynamics problems without resort to the labeled data, in which the I/BCs are forcibly imposed. In particular, both the displacement and stress components are taken as the DNN output, inspired by the hybrid finite-element analysis, which largely improves the accuracy and the trainability of the network. Since the conventional PINN framework augments all the residual loss components in a soft manner with Lagrange multipliers, the weakly imposed I/BCs may not be well satisfied especially when complex I/BCs are present. To overcome this issue, a composite scheme of DNNs is established based on multiple single DNNs such that the I/BCs can be satisfied forcibly in a forcible manner. The proposed PINN framework is demonstrated on several numerical elasticity examples with different I/BCs, including both static and dynamic problems as well as wave propagation in truncated domains. Results show the promise of PINN in the context of computational mechanics applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lawenced完成签到,获得积分20
刚刚
无私芝麻发布了新的文献求助10
2秒前
茉莉发布了新的文献求助10
3秒前
英俊的铭应助赵媛采纳,获得10
4秒前
Akim应助懋懋采纳,获得10
4秒前
静静发布了新的文献求助20
4秒前
4秒前
4秒前
Ava应助忧郁背包采纳,获得10
4秒前
米龙完成签到,获得积分10
5秒前
张张完成签到,获得积分10
5秒前
开拖拉机的芍药完成签到 ,获得积分10
5秒前
5秒前
6秒前
壮壮完成签到,获得积分20
6秒前
念慈关注了科研通微信公众号
7秒前
等待黎明完成签到,获得积分10
7秒前
radom完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
coloy完成签到,获得积分10
8秒前
seal发布了新的文献求助10
9秒前
10秒前
12秒前
权寻梅完成签到,获得积分10
12秒前
忐忑的方盒完成签到 ,获得积分10
13秒前
傻傻的一刀完成签到,获得积分10
13秒前
15秒前
传奇3应助howard采纳,获得10
15秒前
学酥垃圾发布了新的文献求助20
16秒前
qq发布了新的文献求助10
16秒前
忆南完成签到,获得积分10
16秒前
怕孤独的凝海完成签到,获得积分10
17秒前
liran12319发布了新的文献求助20
17秒前
隐形曼青应助哦啦啦采纳,获得10
17秒前
快乐小白菜完成签到,获得积分10
19秒前
体贴太英发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
张自燮发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653156
求助须知:如何正确求助?哪些是违规求助? 4789346
关于积分的说明 15062969
捐赠科研通 4811762
什么是DOI,文献DOI怎么找? 2574063
邀请新用户注册赠送积分活动 1529786
关于科研通互助平台的介绍 1488445