A Large-Scale Fully Annotated Low-Cost Microscopy Image Dataset for Deep Learning Framework

计算机科学 软件可移植性 显微镜 人工智能 图像处理 深度学习 计算机视觉 模式识别(心理学) 图像(数学) 光学 物理 程序设计语言
作者
Sumona Biswas,Shovan Barma
出处
期刊:IEEE Transactions on Nanobioscience [Institute of Electrical and Electronics Engineers]
卷期号:20 (4): 507-515 被引量:4
标识
DOI:10.1109/tnb.2021.3095151
摘要

This work presents a large-scale three-fold annotated, low-cost microscopy image dataset of potato tubers for plant cell analysis in deep learning (DL) framework which has huge potential in the advancement of plant cell biology research. Indeed, low-cost microscopes coupled with new generation smartphones could open new aspects in DL-based microscopy image analysis, which offers several benefits including portability, easy to use, and maintenance. However, its successful implications demand properly annotated large number of diverse microscopy images, which has not been addressed properly- that confines the advanced image processing based plant cell research. Therefore, in this work, a low-cost microscopy image database of potato tuber cells having total 34,657 number of images, has been generated by Foldscope (costs around 1 USD) coupled with a smartphone. This dataset includes 13,369 unstained and 21,288 stained (safranin-o, toluidine blue-o, and lugol's iodine) images with three-fold annotation based on weight, section areas, and tissue zones of the tubers. The physical image quality (e.g., contrast, focus, geometrical attributes, etc.) and its applicability in the DL framework (CNN-based multi-class and multi-label classification) have been examined and results are compared with the traditional microscope image set. The results show that the dataset is highly compatible for the DL framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SYLH应助虎子采纳,获得10
1秒前
爆米花应助yuanhao采纳,获得10
2秒前
2秒前
斯文幻儿发布了新的文献求助10
2秒前
3秒前
终澈完成签到,获得积分10
3秒前
Junping发布了新的文献求助10
3秒前
橘生淮南发布了新的文献求助10
4秒前
4秒前
5秒前
清宁亦无拘完成签到 ,获得积分10
5秒前
张行发布了新的文献求助10
5秒前
852应助踏雪无痕采纳,获得10
6秒前
6秒前
6秒前
7秒前
8秒前
WO完成签到,获得积分20
8秒前
李健的小迷弟应助Dr.coco采纳,获得10
9秒前
wnx001111发布了新的文献求助10
9秒前
脑洞疼应助nqyKOj采纳,获得20
9秒前
隐形曼青应助千秋入画采纳,获得10
9秒前
稳重诗珊完成签到,获得积分10
9秒前
9秒前
星辰大海应助哈士轩采纳,获得10
9秒前
st完成签到,获得积分10
9秒前
10秒前
jianlong0206完成签到,获得积分10
10秒前
wanci应助xxx采纳,获得10
10秒前
10秒前
果冻信号发布了新的文献求助10
10秒前
hdbys发布了新的文献求助10
10秒前
我爱吃糯米团子完成签到,获得积分10
10秒前
一瓶水发布了新的文献求助10
11秒前
SYLH应助橙子采纳,获得30
11秒前
ZZDXXX发布了新的文献求助30
12秒前
12秒前
糕糕发布了新的文献求助10
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635