Spontaneously formed nanostructures in double perovskite rare-earth tantalates for thermal barrier coatings

材料科学 热导率 热障涂层 钙钛矿(结构) 氧化钇稳定氧化锆 声子 纳米结构 声子散射 热膨胀 散射 立方氧化锆 凝聚态物理 纳米技术 复合材料 结晶学 光学 陶瓷 化学 物理
作者
T. Ogawa,Tsuneaki Matsudaira,Daisaku Yokoe,Emi Kawai,Naoki Kawashima,Craig A. J. Fisher,Yoichiro Habu,Takeharu Kato,Satoshi Kitaoka
出处
期刊:Acta Materialia [Elsevier]
卷期号:216: 117152-117152 被引量:19
标识
DOI:10.1016/j.actamat.2021.117152
摘要

The identification of low thermal-conductivity materials that are stable up to high temperatures has been a longstanding challenge for high-temperature thermal management systems such as thermal barrier coatings (TBCs). Although phonon scattering in crystalline solids can be enhanced by nanometer-scale boundaries as well as well-studied atomic-level point defects, the impact of such extended defects on heat transfer in high-temperature applications remains unclear. Herein, through structural characterization and measurements of the thermophysical properties of rare-earth tantalates with double-perovskite structures (RTa3O9; R = La, Nd, Gd, and Yb), it is shown that YbTa3O9 with spontaneously formed nanostructures has a thermal conductivity lower than two-thirds of that of the commercial-level TBC material, i.e., 7 wt% yttria-stabilized zirconia (7YSZ). These results provide evidence of the close relation between enhanced phonon scattering and boundaries separated by distances of few nanometers which contain periodic strain, octahedral tilting, and twin-boundaries. Furthermore, YbTa3O9 exhibits similar thermal expansion characteristics to 7YSZ without any apparent transition associated with a disrupt change in volume, which suggests its potential as a TBC material. The results demonstrate the capability of tuning closely aligned boundaries in crystals to control thermal transport and tailor low-thermal conductivity materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如此纠结完成签到,获得积分10
刚刚
多多就是小豆芽完成签到 ,获得积分10
1秒前
1秒前
Owen应助Lwxbb采纳,获得10
1秒前
不戴眼镜的眼镜王蛇完成签到,获得积分10
1秒前
小小杜完成签到,获得积分10
1秒前
初心完成签到,获得积分20
1秒前
丽丽完成签到 ,获得积分10
1秒前
学术蟑螂发布了新的文献求助10
1秒前
文艺的竺完成签到,获得积分10
2秒前
小林太郎应助斯奈克采纳,获得20
2秒前
2秒前
情怀应助执笔曦倾年采纳,获得10
2秒前
2秒前
2秒前
2秒前
科研民工完成签到,获得积分10
3秒前
FR完成签到,获得积分10
3秒前
4秒前
小马甲应助浩浩大人采纳,获得10
4秒前
4秒前
小小杜发布了新的文献求助20
4秒前
打打应助袁国惠采纳,获得10
4秒前
4秒前
哈哈哈完成签到,获得积分10
5秒前
小张发布了新的文献求助10
5秒前
温柔若完成签到,获得积分10
5秒前
称心的问薇完成签到,获得积分10
6秒前
6秒前
高兴的半凡完成签到 ,获得积分10
7秒前
123完成签到,获得积分10
7秒前
Answer完成签到,获得积分10
7秒前
诚心凝旋发布了新的文献求助10
7秒前
孟柠柠完成签到,获得积分10
8秒前
8秒前
哈哈哈发布了新的文献求助10
8秒前
SYLH应助di采纳,获得10
9秒前
韭菜盒子完成签到,获得积分20
9秒前
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740