Integration and interplay of machine learning and bioinformatics approach to identify genetic interaction related to ovarian cancer chemoresistance.

签名(拓扑) 基因 基因签名 马修斯相关系数 计算生物学 计算机科学 卵巢癌 决策树 机器学习 人工智能 生物 数据挖掘
作者
Kexin Chen,Haoming Xu,Yiming Lei,Pietro Liò,Yuan Li,Hongyan Guo,Mohammad Ali Moni
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (6)
标识
DOI:10.1093/bib/bbab100
摘要

Although chemotherapy is the first-line treatment for ovarian cancer (OCa) patients, chemoresistance (CR) decreases their progression-free survival. This paper investigates the genetic interaction (GI) related to OCa-CR. To decrease the complexity of establishing gene networks, individual signature genes related to OCa-CR are identified using a gradient boosting decision tree algorithm. Additionally, the genetic interaction coefficient (GIC) is proposed to measure the correlation of two signature genes quantitatively and explain their joint influence on OCa-CR. Gene pair that possesses high GIC is identified as signature pair. A total of 24 signature gene pairs are selected that include 10 individual signature genes and the influence of signature gene pairs on OCa-CR is explored. Finally, a signature gene pair-based prediction of OCa-CR is identified. The area under curve (AUC) is a widely used performance measure for machine learning prediction. The AUC of signature gene pair reaches 0.9658, whereas the AUC of individual signature gene-based prediction is 0.6823 only. The identified signature gene pairs not only build an efficient GI network of OCa-CR but also provide an interesting way for OCa-CR prediction. This improvement shows that our proposed method is a useful tool to investigate GI related to OCa-CR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
四羟基合铝酸钾完成签到,获得积分10
刚刚
1秒前
2秒前
3秒前
emmm完成签到,获得积分10
6秒前
01完成签到 ,获得积分10
8秒前
8秒前
9秒前
啊啊的发布了新的文献求助10
9秒前
limin完成签到,获得积分10
10秒前
10秒前
上官若男应助科研通管家采纳,获得10
11秒前
无花果应助科研通管家采纳,获得10
11秒前
jing2000yr应助科研通管家采纳,获得10
11秒前
CharlotteBlue应助科研通管家采纳,获得30
11秒前
CharlotteBlue应助科研通管家采纳,获得30
11秒前
11秒前
11秒前
CharlotteBlue应助科研通管家采纳,获得30
11秒前
科研通AI5应助白茶泡泡球采纳,获得10
12秒前
12秒前
斯文败类应助mty采纳,获得10
13秒前
cc发布了新的文献求助10
14秒前
7890733完成签到,获得积分10
16秒前
JamesPei应助啊啊的采纳,获得10
17秒前
17秒前
科研通AI5应助qqq采纳,获得30
18秒前
19秒前
20秒前
白茶泡泡球完成签到,获得积分10
21秒前
21秒前
体贴汽车发布了新的文献求助10
23秒前
24秒前
25秒前
Wind发布了新的文献求助10
27秒前
打打应助牛牛采纳,获得30
27秒前
超级李包包完成签到,获得积分10
29秒前
追寻的忆山完成签到,获得积分10
32秒前
33秒前
Ava应助哈哈伊采纳,获得10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967180
求助须知:如何正确求助?哪些是违规求助? 3512515
关于积分的说明 11163719
捐赠科研通 3247427
什么是DOI,文献DOI怎么找? 1793827
邀请新用户注册赠送积分活动 874650
科研通“疑难数据库(出版商)”最低求助积分说明 804488