Indoor Localization Fusing WiFi With Smartphone Inertial Sensors Using LSTM Networks

计算机科学 稳健性(进化) 航位推算 惯性测量装置 传感器融合 人工智能 实时计算 无线传感器网络 计算机视觉 全球定位系统 计算机网络 电信 生物化学 基因 化学
作者
Mingyang Zhang,Jie Jia,Jian Chen,Yansha Deng,Xingwei Wang,A.H. Aghvami
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:8 (17): 13608-13623 被引量:61
标识
DOI:10.1109/jiot.2021.3067515
摘要

Smartphone-based indoor localization has attracted considerable attentions in both research and industrial areas. However, the localization accuracy and robustness are still challenging problems due to low-cost noisy devices, especially in those complicated localization environments. Considering that pedestrian dead-reckoning (PDR) devices are widely equipped in recent smartphones, we propose a novel indoor localization fusing algorithm that integrates both wireless fidelity (WiFi) features and PDR features. By formulating the fusing indoor localization as a recursive function approximation problem, a sliding-window-based displacement scheme is designed to generate a time-series-based feature data set. We further apply the long short-term memory (LSTM) network for data fusion and localization on this data set by taking advantage of its benefits in time-series prediction and characterization. To evaluate the performance of the proposed algorithm, we compare it with state-of-the-art filter-based localization algorithms in three typical movements and three postures of holding smartphones. Extensive experiment results demonstrate the accuracy and robustness of the proposed algorithm in indoor localization, even in some extreme environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃的滑板完成签到,获得积分10
刚刚
ywayw完成签到,获得积分10
刚刚
kchen85完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
陶醉南霜发布了新的文献求助10
2秒前
小二郎应助lili采纳,获得10
2秒前
iknj发布了新的文献求助10
2秒前
3秒前
3秒前
小青椒应助lgd采纳,获得30
3秒前
4秒前
愉快善斓发布了新的文献求助10
4秒前
坚强的孤丹完成签到,获得积分20
4秒前
4秒前
xiaoshi完成签到,获得积分10
4秒前
科研通AI6应助泱泱采纳,获得30
5秒前
李健应助成永福采纳,获得10
6秒前
zheng完成签到,获得积分20
7秒前
顾矜应助贝贝会多芬采纳,获得10
7秒前
Akim应助dd采纳,获得10
7秒前
8秒前
危莉发布了新的文献求助10
8秒前
Flexy发布了新的文献求助30
9秒前
liu发布了新的文献求助10
9秒前
10秒前
10秒前
愉快善斓完成签到,获得积分10
10秒前
科研通AI6应助小呆呆采纳,获得10
10秒前
靓丽镜子完成签到,获得积分10
10秒前
11秒前
11秒前
kepler发布了新的文献求助10
12秒前
LiM完成签到,获得积分10
13秒前
13秒前
15秒前
新新新新新发顶刊完成签到 ,获得积分10
15秒前
樱桃发布了新的文献求助10
15秒前
丘比特应助过时的正豪采纳,获得10
17秒前
CQJ发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419757
求助须知:如何正确求助?哪些是违规求助? 4535056
关于积分的说明 14147908
捐赠科研通 4451760
什么是DOI,文献DOI怎么找? 2441864
邀请新用户注册赠送积分活动 1433460
关于科研通互助平台的介绍 1410680