Deep learning based on PINN for solving 2 DOF vortex induced vibration of cylinder

雷诺数 阻力 涡激振动 雷诺平均Navier-Stokes方程 湍流 机械 经典力学 振动 流离失所(心理学) 旋涡脱落 物理 计算流体力学 涡流 计算机科学 声学 心理学 心理治疗师
作者
Cheng Chen,Hao Meng,Yongzheng Li,Guangtao Zhang
出处
期刊:Ocean Engineering [Elsevier]
卷期号:240: 109932-109932 被引量:6
标识
DOI:10.1016/j.oceaneng.2021.109932
摘要

Vortex-induced vibration (VIV) exists widely in natural and industrial fields. The main approaches for solving VIV problems are numerical simulations and experimental methods. However, experiment methods are difficult to obtain the whole flow field information and also high-cost while numerical simulation is extraordinary time-consuming and limited in low Reynolds number and simple geometric configuration. In addition, numerical simulations are difficult to handle the moving mesh technique. In this paper, physics informed neural network (PINN) is utilized to solve the VIV and wake-induced vibration (WIV) of cylinder with different reduced velocities. Compared to tradition data-driven neural network, the Reynolds Average Navier-Stokes (RANS) equation, by implanting an additional turbulent eddy viscosity, coupled with structure's dynamic motion equation are also embedded into the loss function. Training and validation data is obtained by computational fluid dynamic (CFD) technique. Three scenarios are proposed to validate the performance of PINN in solving VIV and WIV of cylinders. In the first place, the stiffness parameter and damping parameter are calculated via limited force data and displacement data; secondly, the turbulence flow field and lifting force/drag force are inferred by scattered velocity information; eventually, the displacement can be directly predicted only through lifting forces and drag forces based on LSTM. Results demonstrate that, compared with traditional neural network, PINN method is more effective in inferring and re-constructing the unknown parameters and flow field with different Reynolds numbers under VIV and WIV circumstances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
子卿发布了新的文献求助10
1秒前
柒柒发布了新的文献求助10
1秒前
好的完成签到 ,获得积分10
2秒前
有梦想的人不睡觉完成签到,获得积分10
3秒前
粱乘风完成签到,获得积分20
3秒前
领导范儿应助东方中恶采纳,获得10
3秒前
Ting222发布了新的文献求助10
4秒前
轻松的妍发布了新的文献求助10
4秒前
4秒前
louyu完成签到 ,获得积分10
5秒前
WHR关闭了WHR文献求助
5秒前
涣醒发布了新的文献求助10
5秒前
Set4Life发布了新的文献求助10
5秒前
111发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
冷酷的啤酒完成签到,获得积分10
7秒前
7秒前
完美世界应助球球了采纳,获得10
7秒前
动听的谷秋完成签到 ,获得积分10
7秒前
yyyy媛完成签到,获得积分10
7秒前
8秒前
Jonathan完成签到,获得积分10
8秒前
AA完成签到,获得积分10
8秒前
斯文败类应助元羞花采纳,获得10
8秒前
我是老大应助元羞花采纳,获得30
8秒前
所所应助元羞花采纳,获得10
8秒前
小蘑菇应助元羞花采纳,获得10
8秒前
大个应助元羞花采纳,获得10
8秒前
我是老大应助元羞花采纳,获得10
8秒前
木叶发布了新的文献求助10
8秒前
调研昵称发布了新的文献求助20
10秒前
hggbui465完成签到 ,获得积分10
10秒前
吴小白完成签到 ,获得积分10
10秒前
独特涫完成签到,获得积分10
11秒前
涣醒完成签到,获得积分10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3467292
求助须知:如何正确求助?哪些是违规求助? 3060169
关于积分的说明 9070165
捐赠科研通 2750612
什么是DOI,文献DOI怎么找? 1509292
科研通“疑难数据库(出版商)”最低求助积分说明 697242
邀请新用户注册赠送积分活动 697160