Deep learning based on PINN for solving 2 DOF vortex induced vibration of cylinder

雷诺数 阻力 涡激振动 雷诺平均Navier-Stokes方程 湍流 机械 经典力学 振动 流离失所(心理学) 旋涡脱落 物理 计算流体力学 涡流 计算机科学 声学 心理学 心理治疗师
作者
Cheng Chen,Hao Meng,Yongzheng Li,Guangtao Zhang
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:240: 109932-109932 被引量:6
标识
DOI:10.1016/j.oceaneng.2021.109932
摘要

Vortex-induced vibration (VIV) exists widely in natural and industrial fields. The main approaches for solving VIV problems are numerical simulations and experimental methods. However, experiment methods are difficult to obtain the whole flow field information and also high-cost while numerical simulation is extraordinary time-consuming and limited in low Reynolds number and simple geometric configuration. In addition, numerical simulations are difficult to handle the moving mesh technique. In this paper, physics informed neural network (PINN) is utilized to solve the VIV and wake-induced vibration (WIV) of cylinder with different reduced velocities. Compared to tradition data-driven neural network, the Reynolds Average Navier-Stokes (RANS) equation, by implanting an additional turbulent eddy viscosity, coupled with structure's dynamic motion equation are also embedded into the loss function. Training and validation data is obtained by computational fluid dynamic (CFD) technique. Three scenarios are proposed to validate the performance of PINN in solving VIV and WIV of cylinders. In the first place, the stiffness parameter and damping parameter are calculated via limited force data and displacement data; secondly, the turbulence flow field and lifting force/drag force are inferred by scattered velocity information; eventually, the displacement can be directly predicted only through lifting forces and drag forces based on LSTM. Results demonstrate that, compared with traditional neural network, PINN method is more effective in inferring and re-constructing the unknown parameters and flow field with different Reynolds numbers under VIV and WIV circumstances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
忐忑的尔蝶完成签到,获得积分10
2秒前
123发布了新的文献求助10
2秒前
2秒前
烟花应助Finley采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
Mila发布了新的文献求助20
3秒前
4秒前
4秒前
5秒前
知12完成签到,获得积分10
5秒前
蝉鸣完成签到,获得积分10
5秒前
抱抱是只可爱小猫完成签到,获得积分10
5秒前
悦耳的芒果完成签到,获得积分10
6秒前
6秒前
6秒前
顺心靖雁完成签到,获得积分10
7秒前
上官若男应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
最短的咒发布了新的文献求助10
8秒前
俊逸老太发布了新的文献求助10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
渡111应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
彭于晏应助愉快新筠采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
wengjc92完成签到,获得积分10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650