Applications of artificial intelligence for DWI and PWI data processing in acute ischemic stroke: Current practices and future directions

半影 医学 冲程(发动机) 磁共振成像 神经影像学 磁共振弥散成像 放射科 急诊分诊台 急性中风 梗塞 缺血 组织纤溶酶原激活剂 内科学 心肌梗塞 医疗急救 工程类 精神科 机械工程
作者
Ines Ben Alaya,Hela Limam,Tarek Kraiem
出处
期刊:Clinical Imaging [Elsevier]
卷期号:81: 79-86 被引量:16
标识
DOI:10.1016/j.clinimag.2021.09.015
摘要

Multimodal Magnetic Resonance Imaging (MRI) techniques of Perfusion-Weighted Imaging (PWI) and Diffusion-Weighted Imaging (DWI) data are integral parts of the diagnostic workup in the acute stroke setting. The visual interpretation of PWI/DWI data is the most likely procedure to triage Acute Ischemic Stroke (AIS) patients who will access reperfusion therapy, especially in those exceeding 6 h of stroke onset. In fact, this process defines two classes of tissue: the ischemic core, which is presumed to be irreversibly damaged, visualized on DWI data and the penumbra which is the reversibly injured brain tissue around the ischemic tissue, visualized on PWI data. AIS patients with a large ischemic penumbra and limited infarction core have a high probability of benefiting from endovascular treatment. However, it is a tedious and time-consuming procedure. Consequently, it is subject to high inter- and intra-observer variability. Thus, the assessment of the potential risks and benefits of endovascular treatment is uncertain. Fast, accurate and automatic post-processing of PWI and DWI data is important for clinical diagnosis and is necessary to help the decision making for therapy. Therefore, an automated procedure that identifies stroke slices, stroke hemisphere, segments stroke regions in DWI, and measures hypoperfused tissue in PWI enhances considerably the reproducibility and the accuracy of stroke assessment. In this work, we draw an overview of several applications of Artificial Intelligence (AI) for the automation processing and their potential contributions in clinical practices. We compare the current approaches among each other's with respect to some key requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拉长的芒果完成签到 ,获得积分10
刚刚
明理含之完成签到,获得积分10
刚刚
静听那片海完成签到,获得积分10
1秒前
nini发布了新的文献求助10
2秒前
jiudai发布了新的文献求助10
3秒前
3秒前
4秒前
一口饺子发布了新的文献求助10
4秒前
Metrix应助柯伊达采纳,获得10
5秒前
5秒前
6秒前
6秒前
7秒前
小白波斯猫关注了科研通微信公众号
7秒前
7秒前
Singularity应助朴实的乌龟采纳,获得10
8秒前
8秒前
皮崇知发布了新的文献求助10
8秒前
8秒前
李冰冰发布了新的文献求助10
8秒前
9秒前
大模型应助Youngsy采纳,获得10
9秒前
欣欣发布了新的文献求助10
9秒前
9秒前
daniel发布了新的文献求助10
9秒前
michelle完成签到,获得积分10
9秒前
10秒前
培根不是吃的肉完成签到,获得积分20
10秒前
10秒前
11秒前
悦耳沛文完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
薛雨佳发布了新的文献求助10
12秒前
李健应助幸福飞丹采纳,获得10
13秒前
13秒前
打打应助gej采纳,获得10
13秒前
13秒前
chenwen渊发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3513684
求助须知:如何正确求助?哪些是违规求助? 3096044
关于积分的说明 9230299
捐赠科研通 2791134
什么是DOI,文献DOI怎么找? 1531650
邀请新用户注册赠送积分活动 711603
科研通“疑难数据库(出版商)”最低求助积分说明 706879