亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Population-based 3D respiratory motion modelling from convolutional autoencoders for 2D ultrasound-guided radiotherapy

影像引导放射治疗 人工智能 计算机科学 计算机视觉 模态(人机交互) 医学影像学 人口 三维超声 运动(物理) 超声波 放射科 医学 环境卫生
作者
Tal Mezheritsky,Liset Vázquez Romaguera,William Le,Samuel Kadoury
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:75: 102260-102260 被引量:15
标识
DOI:10.1016/j.media.2021.102260
摘要

Radiotherapy is a widely used treatment modality for various types of cancers. A challenge for precise delivery of radiation to the treatment site is the management of internal motion caused by the patient's breathing, especially around abdominal organs such as the liver. Current image-guided radiation therapy (IGRT) solutions rely on ionising imaging modalities such as X-ray or CBCT, which do not allow real-time target tracking. Ultrasound imaging (US) on the other hand is relatively inexpensive, portable and non-ionising. Although 2D US can be acquired at a sufficient temporal frequency, it doesn't allow for target tracking in multiple planes, while 3D US acquisitions are not adapted for real-time. In this work, a novel deep learning-based motion modelling framework is presented for ultrasound IGRT. Our solution includes an image similarity-based rigid alignment module combined with a deep deformable motion model. Leveraging the representational capabilities of convolutional autoencoders, our deformable motion model associates complex 3D deformations with 2D surrogate US images through a common learned low dimensional representation. The model is trained on a variety of deformations and anatomies which enables it to generate the 3D motion experienced by the liver of a previously unseen subject. During inference, our framework only requires two pre-treatment 3D volumes of the liver at extreme breathing phases and a live 2D surrogate image representing the current state of the organ. In this study, the presented model is evaluated on a 3D+t US data set of 20 volunteers based on image similarity as well as anatomical target tracking performance. We report results that surpass comparable methodologies in both metric categories with a mean tracking error of 3.5±2.4 mm, demonstrating the potential of this technique for IGRT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呜呜吴完成签到,获得积分10
6秒前
39秒前
YU发布了新的文献求助10
42秒前
甜心椰奶莓莓完成签到 ,获得积分10
44秒前
1分钟前
谦让初晴发布了新的文献求助10
1分钟前
defMain发布了新的文献求助10
1分钟前
JamesPei应助谦让初晴采纳,获得10
1分钟前
1分钟前
完美路人发布了新的文献求助10
1分钟前
defMain完成签到,获得积分10
1分钟前
1分钟前
谦让初晴发布了新的文献求助10
1分钟前
搜集达人应助谦让初晴采纳,获得10
1分钟前
科研通AI6.1应助完美路人采纳,获得10
2分钟前
YU完成签到,获得积分10
2分钟前
2分钟前
2分钟前
谦让初晴发布了新的文献求助10
2分钟前
2分钟前
SCI的芷蝶完成签到 ,获得积分10
2分钟前
2分钟前
sjren_082022完成签到,获得积分10
2分钟前
Lucas应助谦让初晴采纳,获得10
2分钟前
3分钟前
sjren_082022发布了新的文献求助10
3分钟前
zzmm发布了新的文献求助10
3分钟前
研友_VZG7GZ应助zzmm采纳,获得10
3分钟前
3分钟前
瘦瘦的枫叶完成签到 ,获得积分10
3分钟前
3分钟前
谦让初晴发布了新的文献求助10
3分钟前
Suraim完成签到,获得积分10
3分钟前
4分钟前
4分钟前
qianzhihe完成签到,获得积分10
5分钟前
5分钟前
5分钟前
谦让初晴完成签到,获得积分20
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 520
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5829068
求助须知:如何正确求助?哪些是违规求助? 6040389
关于积分的说明 15576046
捐赠科研通 4948665
什么是DOI,文献DOI怎么找? 2666382
邀请新用户注册赠送积分活动 1611988
关于科研通互助平台的介绍 1567041