Population-based 3D respiratory motion modelling from convolutional autoencoders for 2D ultrasound-guided radiotherapy

影像引导放射治疗 人工智能 计算机科学 计算机视觉 模态(人机交互) 医学影像学 人口 三维超声 运动(物理) 超声波 放射科 医学 环境卫生
作者
Tal Mezheritsky,Liset Vázquez Romaguera,William Le,Samuel Kadoury
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:75: 102260-102260 被引量:9
标识
DOI:10.1016/j.media.2021.102260
摘要

Radiotherapy is a widely used treatment modality for various types of cancers. A challenge for precise delivery of radiation to the treatment site is the management of internal motion caused by the patient's breathing, especially around abdominal organs such as the liver. Current image-guided radiation therapy (IGRT) solutions rely on ionising imaging modalities such as X-ray or CBCT, which do not allow real-time target tracking. Ultrasound imaging (US) on the other hand is relatively inexpensive, portable and non-ionising. Although 2D US can be acquired at a sufficient temporal frequency, it doesn't allow for target tracking in multiple planes, while 3D US acquisitions are not adapted for real-time. In this work, a novel deep learning-based motion modelling framework is presented for ultrasound IGRT. Our solution includes an image similarity-based rigid alignment module combined with a deep deformable motion model. Leveraging the representational capabilities of convolutional autoencoders, our deformable motion model associates complex 3D deformations with 2D surrogate US images through a common learned low dimensional representation. The model is trained on a variety of deformations and anatomies which enables it to generate the 3D motion experienced by the liver of a previously unseen subject. During inference, our framework only requires two pre-treatment 3D volumes of the liver at extreme breathing phases and a live 2D surrogate image representing the current state of the organ. In this study, the presented model is evaluated on a 3D+t US data set of 20 volunteers based on image similarity as well as anatomical target tracking performance. We report results that surpass comparable methodologies in both metric categories with a mean tracking error of 3.5±2.4 mm, demonstrating the potential of this technique for IGRT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东东发布了新的文献求助10
刚刚
1秒前
汉堡包发布了新的文献求助10
2秒前
Orange应助LIULIYUAN采纳,获得30
2秒前
3秒前
彭于晏应助gong采纳,获得10
3秒前
kity发布了新的文献求助10
3秒前
科研通AI6应助万古采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
wanci应助大宁采纳,获得10
5秒前
田様应助asdf采纳,获得10
6秒前
Lucas应助糊涂的雪枫采纳,获得10
6秒前
怕黑凤妖完成签到 ,获得积分10
6秒前
pylchm完成签到,获得积分10
7秒前
徐涵完成签到 ,获得积分10
7秒前
科研通AI6应助高玉峰采纳,获得10
7秒前
11发布了新的文献求助10
9秒前
SciGPT应助GoldenLee采纳,获得10
10秒前
Yan完成签到,获得积分10
10秒前
科研通AI6应助fcyyc采纳,获得10
10秒前
Unshouable完成签到,获得积分10
10秒前
11秒前
畅快的觅风完成签到,获得积分20
11秒前
不呐呐完成签到,获得积分10
12秒前
洁净不评完成签到,获得积分10
12秒前
13秒前
13秒前
chen完成签到 ,获得积分10
13秒前
14秒前
14秒前
14秒前
甘蓝型油菜完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
胖鲤鱼发布了新的文献求助10
16秒前
复杂黑夜发布了新的文献求助30
16秒前
小田睡不醒完成签到,获得积分10
17秒前
17秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615218
求助须知:如何正确求助?哪些是违规求助? 4700091
关于积分的说明 14906605
捐赠科研通 4741474
什么是DOI,文献DOI怎么找? 2547964
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473781