已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Population-based 3D respiratory motion modelling from convolutional autoencoders for 2D ultrasound-guided radiotherapy

影像引导放射治疗 人工智能 计算机科学 计算机视觉 模态(人机交互) 医学影像学 人口 三维超声 运动(物理) 超声波 放射科 医学 环境卫生
作者
Tal Mezheritsky,Liset Vázquez Romaguera,William Le,Samuel Kadoury
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:75: 102260-102260 被引量:9
标识
DOI:10.1016/j.media.2021.102260
摘要

Radiotherapy is a widely used treatment modality for various types of cancers. A challenge for precise delivery of radiation to the treatment site is the management of internal motion caused by the patient's breathing, especially around abdominal organs such as the liver. Current image-guided radiation therapy (IGRT) solutions rely on ionising imaging modalities such as X-ray or CBCT, which do not allow real-time target tracking. Ultrasound imaging (US) on the other hand is relatively inexpensive, portable and non-ionising. Although 2D US can be acquired at a sufficient temporal frequency, it doesn't allow for target tracking in multiple planes, while 3D US acquisitions are not adapted for real-time. In this work, a novel deep learning-based motion modelling framework is presented for ultrasound IGRT. Our solution includes an image similarity-based rigid alignment module combined with a deep deformable motion model. Leveraging the representational capabilities of convolutional autoencoders, our deformable motion model associates complex 3D deformations with 2D surrogate US images through a common learned low dimensional representation. The model is trained on a variety of deformations and anatomies which enables it to generate the 3D motion experienced by the liver of a previously unseen subject. During inference, our framework only requires two pre-treatment 3D volumes of the liver at extreme breathing phases and a live 2D surrogate image representing the current state of the organ. In this study, the presented model is evaluated on a 3D+t US data set of 20 volunteers based on image similarity as well as anatomical target tracking performance. We report results that surpass comparable methodologies in both metric categories with a mean tracking error of 3.5±2.4 mm, demonstrating the potential of this technique for IGRT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
董欣雨完成签到,获得积分10
2秒前
3秒前
lxl发布了新的文献求助10
3秒前
塔莉娅完成签到,获得积分10
4秒前
Cloud发布了新的文献求助10
5秒前
一叶知秋完成签到,获得积分10
5秒前
嘟嘟发布了新的文献求助10
7秒前
yyc发布了新的文献求助10
7秒前
谭续燊完成签到,获得积分10
7秒前
科研通AI6应助打喷嚏的猪采纳,获得10
8秒前
刻苦慕晴完成签到 ,获得积分10
9秒前
冷静剑成发布了新的文献求助10
10秒前
10秒前
Dd完成签到,获得积分10
10秒前
无私平彤发布了新的文献求助10
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
ZOE应助科研通管家采纳,获得100
12秒前
BowieHuang应助科研通管家采纳,获得10
13秒前
BowieHuang应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得20
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
共享精神应助嘟嘟采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
嘿嘿应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI6应助科研通管家采纳,获得30
13秒前
13秒前
13秒前
开心完成签到 ,获得积分10
14秒前
打开太阳关注了科研通微信公众号
14秒前
kk发布了新的文献求助10
16秒前
阿达完成签到 ,获得积分10
17秒前
耿耿于怀应助ceeray23采纳,获得20
17秒前
19秒前
haizz完成签到 ,获得积分10
19秒前
冷静剑成完成签到,获得积分10
19秒前
奂毛发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590110
求助须知:如何正确求助?哪些是违规求助? 4674555
关于积分的说明 14794353
捐赠科研通 4630157
什么是DOI,文献DOI怎么找? 2532551
邀请新用户注册赠送积分活动 1501202
关于科研通互助平台的介绍 1468571