Population-based 3D respiratory motion modelling from convolutional autoencoders for 2D ultrasound-guided radiotherapy

影像引导放射治疗 人工智能 计算机科学 计算机视觉 模态(人机交互) 医学影像学 人口 三维超声 运动(物理) 超声波 放射科 医学 环境卫生
作者
Tal Mezheritsky,Liset Vázquez Romaguera,William Le,Samuel Kadoury
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:75: 102260-102260 被引量:9
标识
DOI:10.1016/j.media.2021.102260
摘要

Radiotherapy is a widely used treatment modality for various types of cancers. A challenge for precise delivery of radiation to the treatment site is the management of internal motion caused by the patient's breathing, especially around abdominal organs such as the liver. Current image-guided radiation therapy (IGRT) solutions rely on ionising imaging modalities such as X-ray or CBCT, which do not allow real-time target tracking. Ultrasound imaging (US) on the other hand is relatively inexpensive, portable and non-ionising. Although 2D US can be acquired at a sufficient temporal frequency, it doesn't allow for target tracking in multiple planes, while 3D US acquisitions are not adapted for real-time. In this work, a novel deep learning-based motion modelling framework is presented for ultrasound IGRT. Our solution includes an image similarity-based rigid alignment module combined with a deep deformable motion model. Leveraging the representational capabilities of convolutional autoencoders, our deformable motion model associates complex 3D deformations with 2D surrogate US images through a common learned low dimensional representation. The model is trained on a variety of deformations and anatomies which enables it to generate the 3D motion experienced by the liver of a previously unseen subject. During inference, our framework only requires two pre-treatment 3D volumes of the liver at extreme breathing phases and a live 2D surrogate image representing the current state of the organ. In this study, the presented model is evaluated on a 3D+t US data set of 20 volunteers based on image similarity as well as anatomical target tracking performance. We report results that surpass comparable methodologies in both metric categories with a mean tracking error of 3.5±2.4 mm, demonstrating the potential of this technique for IGRT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿嘿嘿关注了科研通微信公众号
1秒前
1秒前
科目三应助一切顺利元元采纳,获得10
2秒前
3秒前
liu336371完成签到,获得积分10
3秒前
4秒前
是我呀吼完成签到,获得积分10
4秒前
5秒前
tree驳回了一一应助
5秒前
俊逸若之发布了新的文献求助10
6秒前
务实莫言完成签到,获得积分10
6秒前
小满发布了新的文献求助10
7秒前
行行行完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
9秒前
golf完成签到,获得积分10
9秒前
腼腆的缘分完成签到,获得积分10
9秒前
小石头完成签到,获得积分10
9秒前
9秒前
万能图书馆应助俊逸若之采纳,获得10
10秒前
10秒前
shishuang发布了新的文献求助10
11秒前
科研通AI6应助大胆的平蓝采纳,获得10
11秒前
小蘑菇应助Magical采纳,获得10
11秒前
GJ发布了新的文献求助10
11秒前
11秒前
科研通AI6应助好名字采纳,获得10
12秒前
科研通AI6应助动听书文采纳,获得10
12秒前
lucky发布了新的文献求助10
13秒前
离子键发布了新的文献求助10
13秒前
liz发布了新的文献求助10
13秒前
strongfrog发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
灰灰成长中完成签到,获得积分10
14秒前
14秒前
今后应助温柔樱桃采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608315
求助须知:如何正确求助?哪些是违规求助? 4692918
关于积分的说明 14876115
捐赠科研通 4717325
什么是DOI,文献DOI怎么找? 2544189
邀请新用户注册赠送积分活动 1509187
关于科研通互助平台的介绍 1472836