亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Population-based 3D respiratory motion modelling from convolutional autoencoders for 2D ultrasound-guided radiotherapy

影像引导放射治疗 人工智能 计算机科学 计算机视觉 模态(人机交互) 医学影像学 人口 三维超声 运动(物理) 超声波 放射科 医学 环境卫生
作者
Tal Mezheritsky,Liset Vázquez Romaguera,William Le,Samuel Kadoury
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:75: 102260-102260 被引量:9
标识
DOI:10.1016/j.media.2021.102260
摘要

Radiotherapy is a widely used treatment modality for various types of cancers. A challenge for precise delivery of radiation to the treatment site is the management of internal motion caused by the patient's breathing, especially around abdominal organs such as the liver. Current image-guided radiation therapy (IGRT) solutions rely on ionising imaging modalities such as X-ray or CBCT, which do not allow real-time target tracking. Ultrasound imaging (US) on the other hand is relatively inexpensive, portable and non-ionising. Although 2D US can be acquired at a sufficient temporal frequency, it doesn't allow for target tracking in multiple planes, while 3D US acquisitions are not adapted for real-time. In this work, a novel deep learning-based motion modelling framework is presented for ultrasound IGRT. Our solution includes an image similarity-based rigid alignment module combined with a deep deformable motion model. Leveraging the representational capabilities of convolutional autoencoders, our deformable motion model associates complex 3D deformations with 2D surrogate US images through a common learned low dimensional representation. The model is trained on a variety of deformations and anatomies which enables it to generate the 3D motion experienced by the liver of a previously unseen subject. During inference, our framework only requires two pre-treatment 3D volumes of the liver at extreme breathing phases and a live 2D surrogate image representing the current state of the organ. In this study, the presented model is evaluated on a 3D+t US data set of 20 volunteers based on image similarity as well as anatomical target tracking performance. We report results that surpass comparable methodologies in both metric categories with a mean tracking error of 3.5±2.4 mm, demonstrating the potential of this technique for IGRT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Owen应助科研通管家采纳,获得10
5秒前
朴素绿蝶发布了新的文献求助10
10秒前
痴痴的噜完成签到,获得积分10
13秒前
江姜酱先生完成签到,获得积分10
22秒前
搞科研的小李同学完成签到 ,获得积分10
28秒前
科研通AI6应助朴素绿蝶采纳,获得10
29秒前
可爱的函函应助hulahula采纳,获得10
30秒前
fabius0351完成签到 ,获得积分10
34秒前
李健应助阿米尔盼盼采纳,获得10
43秒前
44秒前
hulahula发布了新的文献求助10
48秒前
52秒前
58秒前
长度2到发布了新的文献求助10
1分钟前
xuan发布了新的文献求助10
1分钟前
长度2到完成签到,获得积分10
1分钟前
1分钟前
xtheuv发布了新的文献求助10
1分钟前
Hello应助hulahula采纳,获得10
1分钟前
嘻嘻哈哈完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6应助xtheuv采纳,获得10
1分钟前
drirshad完成签到,获得积分10
1分钟前
芜湖发布了新的文献求助10
1分钟前
1分钟前
冷静新烟完成签到,获得积分10
1分钟前
芜湖完成签到,获得积分10
1分钟前
111发布了新的文献求助10
1分钟前
1分钟前
wanci应助111采纳,获得10
1分钟前
高级牛马完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
无花果应助科研通管家采纳,获得10
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
动听衬衫应助科研通管家采纳,获得20
2分钟前
椒桢发布了新的文献求助10
2分钟前
NexusExplorer应助廖少跑不快采纳,获得10
2分钟前
sdfdzhang完成签到 ,获得积分0
2分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5220819
求助须知:如何正确求助?哪些是违规求助? 4394077
关于积分的说明 13680135
捐赠科研通 4257061
什么是DOI,文献DOI怎么找? 2335959
邀请新用户注册赠送积分活动 1333553
关于科研通互助平台的介绍 1287992