Population-based 3D respiratory motion modelling from convolutional autoencoders for 2D ultrasound-guided radiotherapy

影像引导放射治疗 人工智能 计算机科学 计算机视觉 模态(人机交互) 医学影像学 人口 三维超声 运动(物理) 超声波 放射科 医学 环境卫生
作者
Tal Mezheritsky,Liset Vázquez Romaguera,William Le,Samuel Kadoury
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:75: 102260-102260 被引量:9
标识
DOI:10.1016/j.media.2021.102260
摘要

Radiotherapy is a widely used treatment modality for various types of cancers. A challenge for precise delivery of radiation to the treatment site is the management of internal motion caused by the patient's breathing, especially around abdominal organs such as the liver. Current image-guided radiation therapy (IGRT) solutions rely on ionising imaging modalities such as X-ray or CBCT, which do not allow real-time target tracking. Ultrasound imaging (US) on the other hand is relatively inexpensive, portable and non-ionising. Although 2D US can be acquired at a sufficient temporal frequency, it doesn't allow for target tracking in multiple planes, while 3D US acquisitions are not adapted for real-time. In this work, a novel deep learning-based motion modelling framework is presented for ultrasound IGRT. Our solution includes an image similarity-based rigid alignment module combined with a deep deformable motion model. Leveraging the representational capabilities of convolutional autoencoders, our deformable motion model associates complex 3D deformations with 2D surrogate US images through a common learned low dimensional representation. The model is trained on a variety of deformations and anatomies which enables it to generate the 3D motion experienced by the liver of a previously unseen subject. During inference, our framework only requires two pre-treatment 3D volumes of the liver at extreme breathing phases and a live 2D surrogate image representing the current state of the organ. In this study, the presented model is evaluated on a 3D+t US data set of 20 volunteers based on image similarity as well as anatomical target tracking performance. We report results that surpass comparable methodologies in both metric categories with a mean tracking error of 3.5±2.4 mm, demonstrating the potential of this technique for IGRT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昵称11发布了新的文献求助10
1秒前
Owen应助Huguizhou采纳,获得10
1秒前
韩涵完成签到 ,获得积分10
1秒前
充电宝应助2499297293采纳,获得10
1秒前
aich完成签到,获得积分10
1秒前
鲅鱼圈完成签到,获得积分10
2秒前
3秒前
一朵梅花完成签到,获得积分10
3秒前
咕噜仔完成签到,获得积分10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
4秒前
Orange应助科研通管家采纳,获得10
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得30
4秒前
Hello应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
LewisAcid应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
香蕉诗蕊举报Llll求助涉嫌违规
5秒前
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
打发打发的发到付电费完成签到,获得积分10
5秒前
维奈克拉应助科研通管家采纳,获得20
5秒前
哈哈发布了新的文献求助10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629991
求助须知:如何正确求助?哪些是违规求助? 4721324
关于积分的说明 14972153
捐赠科研通 4788008
什么是DOI,文献DOI怎么找? 2556688
邀请新用户注册赠送积分活动 1517740
关于科研通互助平台的介绍 1478342