Population-based 3D respiratory motion modelling from convolutional autoencoders for 2D ultrasound-guided radiotherapy

影像引导放射治疗 人工智能 计算机科学 计算机视觉 模态(人机交互) 医学影像学 人口 三维超声 运动(物理) 超声波 放射科 医学 环境卫生
作者
Tal Mezheritsky,Liset Vázquez Romaguera,William Le,Samuel Kadoury
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:75: 102260-102260 被引量:9
标识
DOI:10.1016/j.media.2021.102260
摘要

Radiotherapy is a widely used treatment modality for various types of cancers. A challenge for precise delivery of radiation to the treatment site is the management of internal motion caused by the patient's breathing, especially around abdominal organs such as the liver. Current image-guided radiation therapy (IGRT) solutions rely on ionising imaging modalities such as X-ray or CBCT, which do not allow real-time target tracking. Ultrasound imaging (US) on the other hand is relatively inexpensive, portable and non-ionising. Although 2D US can be acquired at a sufficient temporal frequency, it doesn't allow for target tracking in multiple planes, while 3D US acquisitions are not adapted for real-time. In this work, a novel deep learning-based motion modelling framework is presented for ultrasound IGRT. Our solution includes an image similarity-based rigid alignment module combined with a deep deformable motion model. Leveraging the representational capabilities of convolutional autoencoders, our deformable motion model associates complex 3D deformations with 2D surrogate US images through a common learned low dimensional representation. The model is trained on a variety of deformations and anatomies which enables it to generate the 3D motion experienced by the liver of a previously unseen subject. During inference, our framework only requires two pre-treatment 3D volumes of the liver at extreme breathing phases and a live 2D surrogate image representing the current state of the organ. In this study, the presented model is evaluated on a 3D+t US data set of 20 volunteers based on image similarity as well as anatomical target tracking performance. We report results that surpass comparable methodologies in both metric categories with a mean tracking error of 3.5±2.4 mm, demonstrating the potential of this technique for IGRT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
orixero应助轻松梦露采纳,获得10
1秒前
Wyf发布了新的文献求助10
2秒前
2秒前
搜集达人应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
禾风发布了新的文献求助10
3秒前
3秒前
田様应助科研通管家采纳,获得10
3秒前
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
dsslc应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得30
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
Li应助帅气的香之采纳,获得50
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得30
4秒前
sujinyu发布了新的文献求助10
4秒前
shuai发布了新的文献求助10
4秒前
浮游应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
浩天发布了新的文献求助10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
windking完成签到,获得积分10
6秒前
7秒前
晴天娃娃发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5049233
求助须知:如何正确求助?哪些是违规求助? 4277322
关于积分的说明 13333357
捐赠科研通 4091953
什么是DOI,文献DOI怎么找? 2239389
邀请新用户注册赠送积分活动 1246254
关于科研通互助平台的介绍 1174828