亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Population-based 3D respiratory motion modelling from convolutional autoencoders for 2D ultrasound-guided radiotherapy

影像引导放射治疗 人工智能 计算机科学 计算机视觉 模态(人机交互) 医学影像学 人口 三维超声 运动(物理) 超声波 放射科 医学 环境卫生
作者
Tal Mezheritsky,Liset Vázquez Romaguera,William Le,Samuel Kadoury
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:75: 102260-102260 被引量:9
标识
DOI:10.1016/j.media.2021.102260
摘要

Radiotherapy is a widely used treatment modality for various types of cancers. A challenge for precise delivery of radiation to the treatment site is the management of internal motion caused by the patient's breathing, especially around abdominal organs such as the liver. Current image-guided radiation therapy (IGRT) solutions rely on ionising imaging modalities such as X-ray or CBCT, which do not allow real-time target tracking. Ultrasound imaging (US) on the other hand is relatively inexpensive, portable and non-ionising. Although 2D US can be acquired at a sufficient temporal frequency, it doesn't allow for target tracking in multiple planes, while 3D US acquisitions are not adapted for real-time. In this work, a novel deep learning-based motion modelling framework is presented for ultrasound IGRT. Our solution includes an image similarity-based rigid alignment module combined with a deep deformable motion model. Leveraging the representational capabilities of convolutional autoencoders, our deformable motion model associates complex 3D deformations with 2D surrogate US images through a common learned low dimensional representation. The model is trained on a variety of deformations and anatomies which enables it to generate the 3D motion experienced by the liver of a previously unseen subject. During inference, our framework only requires two pre-treatment 3D volumes of the liver at extreme breathing phases and a live 2D surrogate image representing the current state of the organ. In this study, the presented model is evaluated on a 3D+t US data set of 20 volunteers based on image similarity as well as anatomical target tracking performance. We report results that surpass comparable methodologies in both metric categories with a mean tracking error of 3.5±2.4 mm, demonstrating the potential of this technique for IGRT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李书溪完成签到 ,获得积分10
1秒前
8秒前
10秒前
12秒前
碧蓝的夏天完成签到,获得积分20
14秒前
ChenGY完成签到,获得积分10
16秒前
16秒前
我是老大应助lijiauyi1994采纳,获得10
16秒前
18秒前
25秒前
Jiang发布了新的文献求助10
28秒前
Rn完成签到 ,获得积分0
31秒前
33秒前
sunfield2014完成签到 ,获得积分10
33秒前
量子星尘发布了新的文献求助10
34秒前
wangby1984完成签到,获得积分20
34秒前
szr发布了新的文献求助10
36秒前
38秒前
薯条发布了新的文献求助10
45秒前
szr完成签到,获得积分10
48秒前
英姑应助薯条采纳,获得10
52秒前
天宇南神发布了新的文献求助30
53秒前
54秒前
鹏虫虫发布了新的文献求助10
1分钟前
与风为伴完成签到,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
鱼鱼也有发布了新的文献求助10
1分钟前
鹏虫虫发布了新的文献求助10
1分钟前
852应助Jiang采纳,获得80
1分钟前
yyy关注了科研通微信公众号
1分钟前
善学以致用应助Curry采纳,获得10
1分钟前
鹏虫虫发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
Curry发布了新的文献求助10
1分钟前
CodeCraft应助大意的友琴采纳,获得10
1分钟前
cun完成签到,获得积分10
1分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454743
求助须知:如何正确求助?哪些是违规求助? 4562127
关于积分的说明 14284753
捐赠科研通 4485948
什么是DOI,文献DOI怎么找? 2457164
邀请新用户注册赠送积分活动 1447784
关于科研通互助平台的介绍 1422985