Detection and Identification of Organic Pollutants in Drinking Water from Fluorescence Spectra Based on Deep Learning Using Convolutional Autoencoder

污染物 自编码 环境科学 人工智能 深度学习 水质 计算机科学 模式识别(心理学) 环境化学 化学 生态学 有机化学 生物
作者
Jie Yu,Yanjun Cao,Fei Shi,Jiegen Shi,Dibo Hou,Pingjie Huang,Guangxin Zhang,Hongjian Zhang
出处
期刊:Water [Multidisciplinary Digital Publishing Institute]
卷期号:13 (19): 2633-2633 被引量:7
标识
DOI:10.3390/w13192633
摘要

Three dimensional fluorescence spectroscopy has become increasingly useful in the detection of organic pollutants. However, this approach is limited by decreased accuracy in identifying low concentration pollutants. In this research, a new identification method for organic pollutants in drinking water is accordingly proposed using three-dimensional fluorescence spectroscopy data and a deep learning algorithm. A novel application of a convolutional autoencoder was designed to process high-dimensional fluorescence data and extract multi-scale features from the spectrum of drinking water samples containing organic pollutants. Extreme Gradient Boosting (XGBoost), an implementation of gradient-boosted decision trees, was used to identify the organic pollutants based on the obtained features. Method identification performance was validated on three typical organic pollutants in different concentrations for the scenario of accidental pollution. Results showed that the proposed method achieved increasing accuracy, in the case of both high-(>10 μg/L) and low-(≤10 μg/L) concentration pollutant samples. Compared to traditional spectrum processing techniques, the convolutional autoencoder-based approach enabled obtaining features of enhanced detail from fluorescence spectral data. Moreover, evidence indicated that the proposed method maintained the detection ability in conditions whereby the background water changes. It can effectively reduce the rate of misjudgments associated with the fluctuation of drinking water quality. This study demonstrates the possibility of using deep learning algorithms for spectral processing and contamination detection in drinking water.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
如意的靳完成签到,获得积分10
1秒前
内向映天完成签到 ,获得积分10
2秒前
SciGPT应助孙淼采纳,获得10
2秒前
2秒前
努力发布了新的文献求助10
6秒前
我是老大应助陌影采纳,获得50
6秒前
张龙雨完成签到,获得积分10
8秒前
一人之下完成签到,获得积分10
10秒前
姜然完成签到,获得积分10
10秒前
benbenx完成签到 ,获得积分10
11秒前
yydragen应助李俩甜蜜蜜采纳,获得10
12秒前
13秒前
长期完成签到,获得积分10
13秒前
14秒前
范小楠发布了新的文献求助10
16秒前
周一一完成签到,获得积分20
16秒前
Dank1ng发布了新的文献求助10
16秒前
111发布了新的文献求助10
17秒前
陌影发布了新的文献求助50
17秒前
Long完成签到,获得积分10
17秒前
pywangsmmu92发布了新的文献求助10
18秒前
张凯完成签到,获得积分10
20秒前
21秒前
大胆的追命完成签到,获得积分10
23秒前
23秒前
激昂的睫毛完成签到,获得积分10
24秒前
叶强发布了新的文献求助10
25秒前
等于几都行完成签到 ,获得积分10
25秒前
25秒前
万能图书馆应助小医采纳,获得10
26秒前
28秒前
29秒前
生动路人应助只要平凡采纳,获得10
32秒前
KBRS完成签到,获得积分10
33秒前
牛牛完成签到,获得积分10
33秒前
生动路人应助lifeup采纳,获得10
35秒前
乐观无心完成签到,获得积分10
35秒前
harri完成签到,获得积分10
35秒前
36秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994039
求助须知:如何正确求助?哪些是违规求助? 3534593
关于积分的说明 11266046
捐赠科研通 3274516
什么是DOI,文献DOI怎么找? 1806363
邀请新用户注册赠送积分活动 883238
科研通“疑难数据库(出版商)”最低求助积分说明 809719