Detection and Identification of Organic Pollutants in Drinking Water from Fluorescence Spectra Based on Deep Learning Using Convolutional Autoencoder

污染物 自编码 环境科学 人工智能 深度学习 水质 计算机科学 模式识别(心理学) 环境化学 化学 生态学 生物 有机化学
作者
Jie Yu,Yanjun Cao,Fei Shi,Jiegen Shi,Dibo Hou,Pingjie Huang,Guangxin Zhang,Hongjian Zhang
出处
期刊:Water [MDPI AG]
卷期号:13 (19): 2633-2633 被引量:7
标识
DOI:10.3390/w13192633
摘要

Three dimensional fluorescence spectroscopy has become increasingly useful in the detection of organic pollutants. However, this approach is limited by decreased accuracy in identifying low concentration pollutants. In this research, a new identification method for organic pollutants in drinking water is accordingly proposed using three-dimensional fluorescence spectroscopy data and a deep learning algorithm. A novel application of a convolutional autoencoder was designed to process high-dimensional fluorescence data and extract multi-scale features from the spectrum of drinking water samples containing organic pollutants. Extreme Gradient Boosting (XGBoost), an implementation of gradient-boosted decision trees, was used to identify the organic pollutants based on the obtained features. Method identification performance was validated on three typical organic pollutants in different concentrations for the scenario of accidental pollution. Results showed that the proposed method achieved increasing accuracy, in the case of both high-(>10 μg/L) and low-(≤10 μg/L) concentration pollutant samples. Compared to traditional spectrum processing techniques, the convolutional autoencoder-based approach enabled obtaining features of enhanced detail from fluorescence spectral data. Moreover, evidence indicated that the proposed method maintained the detection ability in conditions whereby the background water changes. It can effectively reduce the rate of misjudgments associated with the fluctuation of drinking water quality. This study demonstrates the possibility of using deep learning algorithms for spectral processing and contamination detection in drinking water.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助小皮艇采纳,获得10
刚刚
晒晒发布了新的文献求助10
刚刚
活着完成签到 ,获得积分10
1秒前
1秒前
李健的小迷弟应助帅玉玉采纳,获得10
1秒前
xxh完成签到,获得积分10
1秒前
2秒前
2秒前
平常丝发布了新的文献求助10
2秒前
vz7发布了新的文献求助10
3秒前
qbxiaojie完成签到,获得积分10
3秒前
思源应助勤恳万宝路采纳,获得10
3秒前
3秒前
3秒前
weiling发布了新的文献求助10
4秒前
今后应助icey采纳,获得10
4秒前
Onechch完成签到,获得积分10
4秒前
jingyu841123完成签到,获得积分10
4秒前
5秒前
5秒前
酷酷巧蟹发布了新的文献求助10
5秒前
LYF发布了新的文献求助10
5秒前
8秒前
双子土豆泥完成签到,获得积分10
8秒前
聪慧紫蓝发布了新的文献求助10
8秒前
ren完成签到,获得积分10
8秒前
nuo完成签到,获得积分20
8秒前
聪明眼睛发布了新的文献求助10
8秒前
123发布了新的文献求助10
9秒前
9秒前
李爱国应助小强采纳,获得10
9秒前
南四儿发布了新的文献求助10
9秒前
洋洋洋发布了新的文献求助10
9秒前
白漠雪发布了新的文献求助10
10秒前
dzhang198777发布了新的文献求助10
10秒前
kim发布了新的文献求助10
11秒前
充电宝应助ren采纳,获得10
11秒前
清秋完成签到 ,获得积分10
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728317
求助须知:如何正确求助?哪些是违规求助? 5312368
关于积分的说明 15313794
捐赠科研通 4875546
什么是DOI,文献DOI怎么找? 2618882
邀请新用户注册赠送积分活动 1568431
关于科研通互助平台的介绍 1525095