亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection and Identification of Organic Pollutants in Drinking Water from Fluorescence Spectra Based on Deep Learning Using Convolutional Autoencoder

污染物 自编码 环境科学 人工智能 深度学习 水质 计算机科学 模式识别(心理学) 环境化学 化学 生态学 生物 有机化学
作者
Jie Yu,Yanjun Cao,Fei Shi,Jiegen Shi,Dibo Hou,Pingjie Huang,Guangxin Zhang,Hongjian Zhang
出处
期刊:Water [MDPI AG]
卷期号:13 (19): 2633-2633 被引量:7
标识
DOI:10.3390/w13192633
摘要

Three dimensional fluorescence spectroscopy has become increasingly useful in the detection of organic pollutants. However, this approach is limited by decreased accuracy in identifying low concentration pollutants. In this research, a new identification method for organic pollutants in drinking water is accordingly proposed using three-dimensional fluorescence spectroscopy data and a deep learning algorithm. A novel application of a convolutional autoencoder was designed to process high-dimensional fluorescence data and extract multi-scale features from the spectrum of drinking water samples containing organic pollutants. Extreme Gradient Boosting (XGBoost), an implementation of gradient-boosted decision trees, was used to identify the organic pollutants based on the obtained features. Method identification performance was validated on three typical organic pollutants in different concentrations for the scenario of accidental pollution. Results showed that the proposed method achieved increasing accuracy, in the case of both high-(>10 μg/L) and low-(≤10 μg/L) concentration pollutant samples. Compared to traditional spectrum processing techniques, the convolutional autoencoder-based approach enabled obtaining features of enhanced detail from fluorescence spectral data. Moreover, evidence indicated that the proposed method maintained the detection ability in conditions whereby the background water changes. It can effectively reduce the rate of misjudgments associated with the fluctuation of drinking water quality. This study demonstrates the possibility of using deep learning algorithms for spectral processing and contamination detection in drinking water.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助畅快的涵蕾采纳,获得10
2秒前
连安阳完成签到,获得积分10
8秒前
11秒前
lpy完成签到,获得积分10
13秒前
JamesPei应助on采纳,获得10
13秒前
顾矜应助徐0202采纳,获得10
13秒前
懒癌晚期发布了新的文献求助10
16秒前
andrele发布了新的文献求助10
23秒前
26秒前
34秒前
Jason完成签到 ,获得积分20
36秒前
38秒前
39秒前
lpy发布了新的文献求助10
39秒前
39秒前
40秒前
NexusExplorer应助水水水采纳,获得10
41秒前
欢喜的迎丝完成签到 ,获得积分10
42秒前
Wuyx发布了新的文献求助10
46秒前
48秒前
大模型应助www采纳,获得10
48秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
Downey应助科研通管家采纳,获得10
51秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
51秒前
52秒前
大方大船发布了新的文献求助10
55秒前
on发布了新的文献求助10
56秒前
水水水发布了新的文献求助10
57秒前
丘比特应助Wuyx采纳,获得10
1分钟前
机灵哈密瓜完成签到,获得积分10
1分钟前
大方大船完成签到,获得积分10
1分钟前
Charlie完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
cjy200126完成签到,获得积分10
1分钟前
zzZ_发布了新的文献求助10
1分钟前
徐0202发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590329
求助须知:如何正确求助?哪些是违规求助? 4674705
关于积分的说明 14795072
捐赠科研通 4631262
什么是DOI,文献DOI怎么找? 2532677
邀请新用户注册赠送积分活动 1501268
关于科研通互助平台的介绍 1468617