Detection and Identification of Organic Pollutants in Drinking Water from Fluorescence Spectra Based on Deep Learning Using Convolutional Autoencoder

污染物 自编码 环境科学 人工智能 深度学习 水质 计算机科学 模式识别(心理学) 环境化学 化学 生态学 生物 有机化学
作者
Jie Yu,Yanjun Cao,Fei Shi,Jiegen Shi,Dibo Hou,Pingjie Huang,Guangxin Zhang,Hongjian Zhang
出处
期刊:Water [MDPI AG]
卷期号:13 (19): 2633-2633 被引量:7
标识
DOI:10.3390/w13192633
摘要

Three dimensional fluorescence spectroscopy has become increasingly useful in the detection of organic pollutants. However, this approach is limited by decreased accuracy in identifying low concentration pollutants. In this research, a new identification method for organic pollutants in drinking water is accordingly proposed using three-dimensional fluorescence spectroscopy data and a deep learning algorithm. A novel application of a convolutional autoencoder was designed to process high-dimensional fluorescence data and extract multi-scale features from the spectrum of drinking water samples containing organic pollutants. Extreme Gradient Boosting (XGBoost), an implementation of gradient-boosted decision trees, was used to identify the organic pollutants based on the obtained features. Method identification performance was validated on three typical organic pollutants in different concentrations for the scenario of accidental pollution. Results showed that the proposed method achieved increasing accuracy, in the case of both high-(>10 μg/L) and low-(≤10 μg/L) concentration pollutant samples. Compared to traditional spectrum processing techniques, the convolutional autoencoder-based approach enabled obtaining features of enhanced detail from fluorescence spectral data. Moreover, evidence indicated that the proposed method maintained the detection ability in conditions whereby the background water changes. It can effectively reduce the rate of misjudgments associated with the fluctuation of drinking water quality. This study demonstrates the possibility of using deep learning algorithms for spectral processing and contamination detection in drinking water.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
peanut完成签到,获得积分10
刚刚
善学以致用应助xuxu采纳,获得10
1秒前
zhalc完成签到,获得积分10
1秒前
wangli发布了新的文献求助10
2秒前
典雅的夜安完成签到,获得积分10
2秒前
刘子琪完成签到,获得积分10
2秒前
2秒前
研友_LXO0R8完成签到,获得积分10
3秒前
bkagyin应助三三搞科研采纳,获得50
3秒前
物语关注了科研通微信公众号
3秒前
络噬元兽发布了新的文献求助10
3秒前
深情安青应助沉静的曼荷采纳,获得10
3秒前
思源应助高大的未来采纳,获得10
3秒前
Nano举报lhxing求助涉嫌违规
5秒前
猪幺妖完成签到 ,获得积分10
5秒前
健壮慕梅发布了新的文献求助10
6秒前
wkk417发布了新的文献求助10
6秒前
科研通AI6应助Zoe013采纳,获得30
8秒前
贤仔完成签到,获得积分10
9秒前
邓佳鑫Alan应助zhang采纳,获得10
9秒前
充电宝应助健壮慕梅采纳,获得10
10秒前
爆米花应助炙热秋翠采纳,获得10
10秒前
曾经的碧萱完成签到,获得积分10
12秒前
蟹老板完成签到,获得积分10
12秒前
星辰大海应助高挑的雨雪采纳,获得10
13秒前
13秒前
13秒前
13秒前
14秒前
浮游应助wen采纳,获得10
14秒前
14秒前
小铃铛完成签到,获得积分10
17秒前
云海老完成签到,获得积分10
17秒前
正直的博完成签到,获得积分10
18秒前
眼睛大的从雪完成签到,获得积分10
18秒前
蟹老板发布了新的文献求助20
18秒前
lnpuzgz完成签到 ,获得积分10
19秒前
19秒前
正直的博发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460995
求助须知:如何正确求助?哪些是违规求助? 4566103
关于积分的说明 14303321
捐赠科研通 4491747
什么是DOI,文献DOI怎么找? 2460462
邀请新用户注册赠送积分活动 1449774
关于科研通互助平台的介绍 1425554