Detection and Identification of Organic Pollutants in Drinking Water from Fluorescence Spectra Based on Deep Learning Using Convolutional Autoencoder

污染物 自编码 环境科学 人工智能 深度学习 水质 计算机科学 模式识别(心理学) 环境化学 化学 生态学 生物 有机化学
作者
Jie Yu,Yanjun Cao,Fei Shi,Jiegen Shi,Dibo Hou,Pingjie Huang,Guangxin Zhang,Hongjian Zhang
出处
期刊:Water [MDPI AG]
卷期号:13 (19): 2633-2633 被引量:7
标识
DOI:10.3390/w13192633
摘要

Three dimensional fluorescence spectroscopy has become increasingly useful in the detection of organic pollutants. However, this approach is limited by decreased accuracy in identifying low concentration pollutants. In this research, a new identification method for organic pollutants in drinking water is accordingly proposed using three-dimensional fluorescence spectroscopy data and a deep learning algorithm. A novel application of a convolutional autoencoder was designed to process high-dimensional fluorescence data and extract multi-scale features from the spectrum of drinking water samples containing organic pollutants. Extreme Gradient Boosting (XGBoost), an implementation of gradient-boosted decision trees, was used to identify the organic pollutants based on the obtained features. Method identification performance was validated on three typical organic pollutants in different concentrations for the scenario of accidental pollution. Results showed that the proposed method achieved increasing accuracy, in the case of both high-(>10 μg/L) and low-(≤10 μg/L) concentration pollutant samples. Compared to traditional spectrum processing techniques, the convolutional autoencoder-based approach enabled obtaining features of enhanced detail from fluorescence spectral data. Moreover, evidence indicated that the proposed method maintained the detection ability in conditions whereby the background water changes. It can effectively reduce the rate of misjudgments associated with the fluctuation of drinking water quality. This study demonstrates the possibility of using deep learning algorithms for spectral processing and contamination detection in drinking water.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
景别完成签到,获得积分10
刚刚
彭于晏应助zhappy采纳,获得20
刚刚
1秒前
xg发布了新的文献求助10
1秒前
2秒前
Tophet完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
FashionBoy应助落落采纳,获得10
4秒前
活力的青枫完成签到 ,获得积分10
4秒前
苏素肃发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
空禅yew发布了新的文献求助10
6秒前
汉堡包应助花开的声音1217采纳,获得10
6秒前
ying发布了新的文献求助10
6秒前
animenz完成签到,获得积分10
7秒前
tY发布了新的文献求助10
8秒前
OJL发布了新的文献求助10
8秒前
8秒前
8秒前
柒柒完成签到,获得积分10
8秒前
丘比特应助111采纳,获得10
9秒前
10秒前
10秒前
XShu完成签到,获得积分20
10秒前
xx完成签到 ,获得积分10
11秒前
羊知鱼完成签到,获得积分10
12秒前
公茂源发布了新的文献求助30
12秒前
搞怪不言发布了新的文献求助10
13秒前
DDDD完成签到,获得积分10
13秒前
陈莹发布了新的文献求助10
13秒前
执着的幻柏完成签到,获得积分10
13秒前
14秒前
14秒前
苏素肃完成签到,获得积分10
14秒前
隐形曼青应助sw98318采纳,获得10
15秒前
wangyanwxy发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808