亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection and Identification of Organic Pollutants in Drinking Water from Fluorescence Spectra Based on Deep Learning Using Convolutional Autoencoder

污染物 自编码 环境科学 人工智能 深度学习 水质 计算机科学 模式识别(心理学) 环境化学 化学 生态学 生物 有机化学
作者
Jie Yu,Yanjun Cao,Fei Shi,Jiegen Shi,Dibo Hou,Pingjie Huang,Guangxin Zhang,Hongjian Zhang
出处
期刊:Water [MDPI AG]
卷期号:13 (19): 2633-2633 被引量:7
标识
DOI:10.3390/w13192633
摘要

Three dimensional fluorescence spectroscopy has become increasingly useful in the detection of organic pollutants. However, this approach is limited by decreased accuracy in identifying low concentration pollutants. In this research, a new identification method for organic pollutants in drinking water is accordingly proposed using three-dimensional fluorescence spectroscopy data and a deep learning algorithm. A novel application of a convolutional autoencoder was designed to process high-dimensional fluorescence data and extract multi-scale features from the spectrum of drinking water samples containing organic pollutants. Extreme Gradient Boosting (XGBoost), an implementation of gradient-boosted decision trees, was used to identify the organic pollutants based on the obtained features. Method identification performance was validated on three typical organic pollutants in different concentrations for the scenario of accidental pollution. Results showed that the proposed method achieved increasing accuracy, in the case of both high-(>10 μg/L) and low-(≤10 μg/L) concentration pollutant samples. Compared to traditional spectrum processing techniques, the convolutional autoencoder-based approach enabled obtaining features of enhanced detail from fluorescence spectral data. Moreover, evidence indicated that the proposed method maintained the detection ability in conditions whereby the background water changes. It can effectively reduce the rate of misjudgments associated with the fluctuation of drinking water quality. This study demonstrates the possibility of using deep learning algorithms for spectral processing and contamination detection in drinking water.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
lu发布了新的文献求助10
9秒前
贪玩的万仇完成签到 ,获得积分10
10秒前
10秒前
12秒前
火星上的宝马完成签到,获得积分10
25秒前
悲凉的忆南完成签到,获得积分10
28秒前
29秒前
陈旧完成签到,获得积分10
31秒前
32秒前
欣欣子完成签到,获得积分10
34秒前
sunstar完成签到,获得积分10
38秒前
40秒前
yxl完成签到,获得积分10
41秒前
42秒前
可耐的盈完成签到,获得积分10
45秒前
绿毛水怪完成签到,获得积分10
48秒前
lsc完成签到,获得积分10
51秒前
小fei完成签到,获得积分10
54秒前
麻辣薯条完成签到,获得积分10
58秒前
时尚身影完成签到,获得积分10
1分钟前
1分钟前
流苏完成签到,获得积分0
1分钟前
流苏2完成签到,获得积分10
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
柔弱的书翠完成签到,获得积分10
1分钟前
无限幻枫发布了新的文献求助10
1分钟前
1分钟前
平淡如天完成签到,获得积分10
1分钟前
1分钟前
1分钟前
树妖三三完成签到,获得积分10
1分钟前
catherine发布了新的文献求助10
1分钟前
搜集达人应助负责的幻波采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549171
求助须知:如何正确求助?哪些是违规求助? 4634531
关于积分的说明 14634745
捐赠科研通 4575906
什么是DOI,文献DOI怎么找? 2509379
邀请新用户注册赠送积分活动 1485290
关于科研通互助平台的介绍 1456426