Anomaly detection of bridge health monitoring data based on KNN algorithm

计算机科学 异常检测 子序列 算法 时间点 分歧(语言学) 系列(地层学) 时间序列 结构健康监测 模式识别(心理学) 桥(图论) 分割 数据挖掘 奇异值分解 人工智能 数学 有界函数 哲学 数学分析 内科学 古生物学 机器学习 美学 复合材料 材料科学 生物 医学 语言学
作者
Lei Zhen,Liang Zhu,Youliang Fang,Xiaolei Li,Beizhan Liu
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:39 (4): 5243-5252 被引量:11
标识
DOI:10.3233/jifs-189009
摘要

Pattern recognition technology is applied to bridge health monitoring to solve abnormalities in bridge health monitoring data. Testing is of great significance. For abnormal data detection, this paper proposes a single variable pattern anomaly detection method based on KNN distance and a multivariate time series anomaly detection method based on the covariance matrix and singular value decomposition. This method first performs compression and segmentation on the original data sequence based on important points to obtain multiple time subsequences, then calculates the pattern distance between each time subsequence according to the similarity measure of the time series, and finally selects the abnormal mode according to the KNN method. In this paper, the reliability of the method is verified through experiments. The experimental results in this paper show that the 5/7/9 / 11-nearest neighbors point to a specific number of nodes. Combined with the original time series diagram corresponding to the time zone view, in this paragraph in the time, the value of the temperature sensor No. 6 stays at 32.5 degrees Celsius for up to one month. The detection algorithm controls the number of MTS subsequences through sliding windows and sliding intervals. The execution time is not large, and the value of K is different. Although the calculated results are different, most of the most obvious abnormal sequences can be detected. The results of this paper provide a certain reference value for the study of abnormal detection of bridge health monitoring data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙福禄应助mrz采纳,获得10
刚刚
开心蘑菇应助Natforever采纳,获得10
刚刚
1秒前
do0完成签到,获得积分10
1秒前
2秒前
甜菜发布了新的文献求助10
3秒前
冰冰发布了新的文献求助10
3秒前
5秒前
狗不理发布了新的文献求助10
5秒前
帅仁123完成签到,获得积分20
5秒前
晴晴完成签到,获得积分10
6秒前
书生完成签到,获得积分10
6秒前
在水一方应助星星采纳,获得10
6秒前
6秒前
Rachel完成签到,获得积分20
7秒前
SHIROKO完成签到,获得积分10
7秒前
nns完成签到,获得积分10
7秒前
派大星发布了新的文献求助10
8秒前
兜兜窦完成签到,获得积分10
8秒前
seven发布了新的文献求助10
8秒前
danny发布了新的文献求助10
9秒前
9秒前
深情安青应助贪玩的听荷采纳,获得10
10秒前
文艺的又亦完成签到,获得积分10
10秒前
黄黄完成签到,获得积分0
10秒前
顺利紫山发布了新的文献求助10
11秒前
西红柿完成签到,获得积分0
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
帕尼灬尼发布了新的文献求助10
11秒前
大力老木发布了新的文献求助10
11秒前
12秒前
12秒前
lkjh驳回了佳佳应助
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635