Anomaly detection of bridge health monitoring data based on KNN algorithm

计算机科学 异常检测 子序列 算法 时间点 分歧(语言学) 系列(地层学) 时间序列 结构健康监测 模式识别(心理学) 桥(图论) 分割 数据挖掘 奇异值分解 人工智能 数学 有界函数 哲学 数学分析 内科学 古生物学 机器学习 美学 复合材料 材料科学 生物 医学 语言学
作者
Lei Zhen,Liang Zhu,Youliang Fang,Xiaolei Li,Beizhan Liu
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:39 (4): 5243-5252 被引量:11
标识
DOI:10.3233/jifs-189009
摘要

Pattern recognition technology is applied to bridge health monitoring to solve abnormalities in bridge health monitoring data. Testing is of great significance. For abnormal data detection, this paper proposes a single variable pattern anomaly detection method based on KNN distance and a multivariate time series anomaly detection method based on the covariance matrix and singular value decomposition. This method first performs compression and segmentation on the original data sequence based on important points to obtain multiple time subsequences, then calculates the pattern distance between each time subsequence according to the similarity measure of the time series, and finally selects the abnormal mode according to the KNN method. In this paper, the reliability of the method is verified through experiments. The experimental results in this paper show that the 5/7/9 / 11-nearest neighbors point to a specific number of nodes. Combined with the original time series diagram corresponding to the time zone view, in this paragraph in the time, the value of the temperature sensor No. 6 stays at 32.5 degrees Celsius for up to one month. The detection algorithm controls the number of MTS subsequences through sliding windows and sliding intervals. The execution time is not large, and the value of K is different. Although the calculated results are different, most of the most obvious abnormal sequences can be detected. The results of this paper provide a certain reference value for the study of abnormal detection of bridge health monitoring data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Neo完成签到,获得积分10
3秒前
whilers发布了新的文献求助10
5秒前
5秒前
淡淡从蕾发布了新的文献求助10
6秒前
7秒前
九月完成签到,获得积分10
8秒前
善学以致用应助小芒果采纳,获得10
8秒前
10秒前
13秒前
14秒前
今后应助千空采纳,获得10
15秒前
ding应助大面包采纳,获得10
16秒前
Jasper应助洛洛采纳,获得10
17秒前
独特的易形完成签到,获得积分10
17秒前
YuMit发布了新的文献求助10
17秒前
20秒前
whilers完成签到,获得积分10
22秒前
gqp完成签到,获得积分10
23秒前
24秒前
小芒果发布了新的文献求助10
25秒前
26秒前
上官若男应助YuMit采纳,获得10
27秒前
追寻的山晴完成签到,获得积分10
29秒前
ag发布了新的文献求助10
30秒前
33秒前
34秒前
hji发布了新的文献求助10
34秒前
清新的帅哥应助人间烟火采纳,获得10
36秒前
37秒前
37秒前
dorakkk发布了新的文献求助10
37秒前
翟翟发布了新的文献求助10
38秒前
39秒前
暮光微凉发布了新的文献求助10
42秒前
yangp完成签到,获得积分10
42秒前
46秒前
zc驳回了Jasper应助
48秒前
暮光微凉完成签到,获得积分10
49秒前
uniquedl完成签到 ,获得积分10
51秒前
小Fan展开应助67采纳,获得10
53秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3334222
求助须知:如何正确求助?哪些是违规求助? 2963545
关于积分的说明 8610003
捐赠科研通 2642451
什么是DOI,文献DOI怎么找? 1446693
科研通“疑难数据库(出版商)”最低求助积分说明 670394
邀请新用户注册赠送积分活动 658533