Improved calibration model for single-camera endoscopic tomographic systems

校准 计算机科学 人工智能 放大倍数 计算机视觉 过程(计算) 断层摄影术 断层重建 迭代重建 数学 光学 物理 统计 操作系统
作者
Weiwei Cai,Hecong Liu,Qianlong Wang,Dehao Ju
出处
期刊:Journal of The Optical Society of America B-optical Physics [The Optical Society]
卷期号:37 (9): 2578-2578 被引量:2
标识
DOI:10.1364/josab.396415
摘要

Multidimensional imaging has become one of the major developing trends of combustion diagnostics, and volumetric tomography is one of those techniques that has experienced significant progress over the past decades. Numerous time-resolved modalities of volumetric tomography have been developed to image a variety of physical quantities. Due to formidable expenses associated with the high-speed cameras, single-camera endoscopic versions have become more and more popular. Calibration is a critical step to establish the geometric relationship between the projections and the volume of interest. Zhang’s calibration model [ Seventh IEEE International Conference on Computer Vision (ICCV) ) (IEEE IEEE , 1999 ), Vol. 661 , pp. 666 –673 ] for a multicamera system has been adopted extensively for endoscopic tomographic systems. However, Zhang’s model is insufficient to depict the entire imaging process due to the existence of fiber bundles. In this work, an improved calibration model is developed by introducing a secondary imaging process to account for the introduction of the fiber bundles. Comparative studies were then conducted both numerically and experimentally to assess the imaging models. The results showed that Zhang’s model could introduce a large error in distance estimation when the magnification is nonunity, while the modified model can achieve a higher calibration precision under various secondary magnifications. This work can help further improve the reconstruction accuracy of endoscopic tomography.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白完成签到,获得积分10
刚刚
零度蓝莓完成签到,获得积分10
刚刚
科研通AI6应助月星采纳,获得10
1秒前
yuxiao完成签到,获得积分10
1秒前
tigger完成签到 ,获得积分10
2秒前
xiaofanwang发布了新的文献求助10
2秒前
鸭梨发布了新的文献求助10
2秒前
2秒前
脑洞疼应助xinghe123采纳,获得10
2秒前
小白发布了新的文献求助10
2秒前
2秒前
ding应助佚名采纳,获得10
3秒前
刘奎冉发布了新的文献求助10
3秒前
甜蜜屁池完成签到,获得积分10
3秒前
小小小小w完成签到,获得积分10
4秒前
4秒前
5秒前
上官若男应助志小天采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
SY发布了新的文献求助10
6秒前
7秒前
xiaofanwang完成签到,获得积分10
7秒前
8秒前
8秒前
左丘冥完成签到,获得积分10
9秒前
9秒前
内向的小虾米完成签到,获得积分10
10秒前
迪迪张完成签到,获得积分10
10秒前
桐桐应助小张同学采纳,获得10
10秒前
阳6完成签到 ,获得积分10
10秒前
xiaojin完成签到,获得积分10
11秒前
liu完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
大锅逢饭完成签到,获得积分10
11秒前
11秒前
志小天完成签到,获得积分10
12秒前
13秒前
自觉志泽发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809