协方差函数
协方差
协方差函数
高斯过程
数学
协方差矩阵
功能(生物学)
贝叶斯概率
算法
有理二次协方差函数
协方差矩阵的估计
参数化(大气建模)
应用数学
卷积(计算机科学)
计算机科学
高斯分布
数学优化
协方差交集
统计
人工智能
物理
生物
进化生物学
辐射传输
量子力学
人工神经网络
作者
Evandro Konzen,Jianghong Shi,Zhanfeng Wang
出处
期刊:Cornell University - arXiv
日期:2019-03-24
被引量:1
摘要
We discuss a general Bayesian framework on modeling multidimensional function-valued processes by using a Gaussian process or a heavy-tailed process as a prior, enabling us to handle nonseparable and/or nonstationary covariance structure. The nonstationarity is introduced by a convolution-based approach through a varying anisotropy matrix, whose parameters vary along the input space and are estimated via a local empirical Bayesian method. For the varying matrix, we propose to use a spherical parametrization, leading to unconstrained and interpretable parameters. The unconstrained nature allows the parameters to be modeled as a nonparametric function of time, spatial location or other covariates. The interpretation of the parameters is based on closed-form expressions, providing valuable insights into nonseparable covariance structures. Furthermore, to extract important information in data with complex covariance structure, the Bayesian framework can decompose the function-valued processes using the eigenvalues and eigensurfaces calculated from the estimated covariance structure. The results are demonstrated by simulation studies and by an application to wind intensity data. Supplementary materials for this article are available online.
科研通智能强力驱动
Strongly Powered by AbleSci AI