木质素
解聚
化学
有机化学
聚合物
劈开
单体
乙醚
木质纤维素生物量
酶
作者
Grace E. Klinger,Yuting Zhou,Juliet A. Foote,Abby M. Wester,Yanbin Cui,Manar Alherech,Shannon S. Stahl,James E. Jackson,Eric L. Hegg
出处
期刊:Chemsuschem
[Wiley]
日期:2020-07-15
卷期号:13 (17): 4394-4399
被引量:33
标识
DOI:10.1002/cssc.202001238
摘要
Abstract Lignin may serve as a renewable feedstock for the production of chemicals and fuels if mild, scalable processes for its depolymerization can be devised. The use of small organic thiols represents a bioinspired strategy to cleave the β‐O‐4 bond, the most common linkage in lignin. In the present study, synthetic β‐O‐4 linked polymers were treated with organic thiols, yielding up to 90 % cleaved monomer products. Lignin extracted from poplar was also treated with organic thiols resulting in molecular weight reductions as high as 65 % ( M n ) in oxidized lignin. Thiol‐based cleavage of other lignin linkages was also explored in small‐molecule model systems to uncover additional potential pathways by which thiols might depolymerize lignin. The success of thiol‐mediated cleavage on model dimers, polymers, and biomass‐derived lignin illustrates the potential utility of small redox‐active molecules to penetrate complex polymer matrices for depolymerization and subsequent valorization of lignin into fuels and chemicals.
科研通智能强力驱动
Strongly Powered by AbleSci AI