Damage identification method of prestressed concrete beam bridge based on convolutional neural network

卷积神经网络 计算机科学 桥(图论) 灵活性(工程) 灵活性方法 预应力混凝土 曲率 结构工程 人工神经网络 对角线的 鉴定(生物学) 人工智能 大梁 箱梁 工程类 有限元法 数学 内科学 统计 生物 医学 植物 几何学
作者
Sanqiang Yang,Huang Yong
出处
期刊:Neural Computing and Applications [Springer Nature]
卷期号:33 (2): 535-545 被引量:24
标识
DOI:10.1007/s00521-020-05052-w
摘要

Bridges play an important role in transportation, but because of overload and natural factors, bridges will inevitably be damaged, which will affect traffic and even lead to major accidents. Therefore, timely and accurate identification of bridge damage is extremely necessary. Because of the great danger of manual detection, in order to identify the damage of prestressed concrete girder bridge safely, conveniently and accurately, this paper proposes a method of damage identification of prestressed concrete girder bridge based on convolutional neural network, which realizes the intelligent identification of bridge damage. Firstly, the damage identification method based on the flexibility matrix is introduced, and the flexibility diagonal curvature index constructed by the diagonal element of flexibility matrix is introduced. Secondly, the basic principle of applying convolutional neural network to bridge damage identification is elaborated. Finally, combined with the flexibility curvature method and the convolutional neural network, the flexibility of the structure is selected as the input of the convolutional neural network to realize the bridge damage identification. Through simulation, it is found that the use of convolutional neural network for the bridge identification is feasible, and combined with the flexibility curvature method, it can well identify the damage location and damage degree of prestressed concrete beam bridge structure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
王钟萱完成签到,获得积分10
1秒前
完美青旋完成签到,获得积分10
2秒前
858278343完成签到,获得积分10
2秒前
归尘应助QAQ采纳,获得10
3秒前
3秒前
scy完成签到,获得积分20
4秒前
不吃坏橘子完成签到,获得积分10
4秒前
蓝天发布了新的文献求助10
4秒前
5秒前
858278343发布了新的文献求助10
5秒前
无花果应助666采纳,获得10
5秒前
慕青应助陶治采纳,获得10
5秒前
何幻悲完成签到,获得积分20
6秒前
6秒前
lirui发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
漂亮的雪糕完成签到,获得积分10
7秒前
8秒前
何幻悲发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
9秒前
领导范儿应助111采纳,获得10
9秒前
小二郎应助666采纳,获得10
10秒前
10秒前
11秒前
李健应助金色晨光采纳,获得10
11秒前
善学以致用应助魏铭哲采纳,获得10
11秒前
11秒前
12秒前
12秒前
13秒前
13秒前
14秒前
马骏发布了新的文献求助10
14秒前
田様应助聪慧石头采纳,获得10
15秒前
草莓苹果发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5721428
求助须知:如何正确求助?哪些是违规求助? 5265735
关于积分的说明 15294026
捐赠科研通 4870760
什么是DOI,文献DOI怎么找? 2615607
邀请新用户注册赠送积分活动 1565381
关于科研通互助平台的介绍 1522454