Heterogeneous Graph Convolutional Networks and Matrix Completion for miRNA-Disease Association Prediction

计算机科学 异构网络 相似性(几何) 矩阵完成 图形 交叉验证 节点(物理) 疾病 生物网络 小RNA 数据挖掘 计算生物学 人工智能 理论计算机科学 生物 医学 遗传学 物理 工程类 图像(数学) 病理 无线网络 基因 结构工程 高斯分布 无线 量子力学 电信
作者
Rongxiang Zhu,Chaojie Ji,Yingying Wang,Yunpeng Cai,Hongyan Wu
出处
期刊:Frontiers in Bioengineering and Biotechnology [Frontiers Media]
卷期号:8 被引量:12
标识
DOI:10.3389/fbioe.2020.00901
摘要

Due to the cost and complexity of biological experiments, many computational methods have been proposed to predict potential miRNA-disease associations by utilizing known miRNA-disease associations and other related information. However, there are some challenges for these computational methods. First, the relationships between miRNAs and diseases are complex. The computational network should consider the local and global influence of neighborhoods from the network. Furthermore, predicting disease-related miRNAs without any known associations is also very important. This study presents a new computational method that constructs a heterogeneous network composed of a miRNA similarity network, disease similarity network, and known miRNA-disease association network. The miRNA similarity considers the miRNAs and their possible families and clusters. The information of each node in heterogeneous network is obtained by aggregating neighborhood information with graph convolutional networks (GCNs), which can pass the information of a node to its intermediate and distant neighbors. Disease-related miRNAs with no known associations can be predicted with the reconstructed heterogeneous matrix. We apply 5-fold cross-validation, leave-one-disease-out cross-validation, and global and local leave-one-out cross-validation to evaluate our method. The corresponding areas under the curves (AUCs) are 0.9616, 0.9946, 0.9656, and 0.9532, confirming that our approach significantly outperforms the state-of-the-art methods. Case studies show that this approach can effectively predict new diseases without any known miRNAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
盼盼完成签到,获得积分10
1秒前
酷炫的凡波完成签到,获得积分10
1秒前
嘉芮完成签到,获得积分10
1秒前
ChenXinde完成签到,获得积分10
1秒前
研友_X89o6n完成签到,获得积分10
1秒前
深情安青应助迅速的念芹采纳,获得10
1秒前
2秒前
2秒前
浊轶发布了新的文献求助10
2秒前
不吃鱼的芹菜完成签到,获得积分10
2秒前
2秒前
小小发布了新的文献求助10
2秒前
2秒前
3秒前
wikkk发布了新的文献求助10
3秒前
酷波er应助张朝程采纳,获得10
3秒前
浮游应助成乙采纳,获得10
3秒前
Maestro_S发布了新的文献求助10
4秒前
xiaoxiao完成签到,获得积分10
4秒前
ATOM完成签到,获得积分20
4秒前
4秒前
5秒前
5秒前
笑点低可乐完成签到,获得积分10
5秒前
炸虾仁完成签到 ,获得积分10
5秒前
漫漫完成签到 ,获得积分10
5秒前
ding发布了新的文献求助10
6秒前
无敌学术王王完成签到,获得积分10
6秒前
林苏发布了新的文献求助30
6秒前
kk发布了新的文献求助10
6秒前
坦率的丹云完成签到,获得积分10
6秒前
ling完成签到 ,获得积分10
6秒前
6秒前
xyu完成签到 ,获得积分10
7秒前
8秒前
Joker完成签到,获得积分10
8秒前
123完成签到,获得积分10
8秒前
8秒前
无私的凌丝完成签到,获得积分10
8秒前
磊2024完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4571570
求助须知:如何正确求助?哪些是违规求助? 3992686
关于积分的说明 12358989
捐赠科研通 3665670
什么是DOI,文献DOI怎么找? 2020248
邀请新用户注册赠送积分活动 1054513
科研通“疑难数据库(出版商)”最低求助积分说明 942077