Heterogeneous Graph Convolutional Networks and Matrix Completion for miRNA-Disease Association Prediction

计算机科学 异构网络 相似性(几何) 矩阵完成 图形 交叉验证 节点(物理) 疾病 生物网络 小RNA 数据挖掘 计算生物学 人工智能 理论计算机科学 生物 医学 遗传学 电信 无线网络 图像(数学) 物理 结构工程 量子力学 病理 基因 工程类 无线 高斯分布
作者
Rongxiang Zhu,Chaojie Ji,Yingying Wang,Yunpeng Cai,Hongyan Wu
出处
期刊:Frontiers in Bioengineering and Biotechnology [Frontiers Media SA]
卷期号:8 被引量:12
标识
DOI:10.3389/fbioe.2020.00901
摘要

Due to the cost and complexity of biological experiments, many computational methods have been proposed to predict potential miRNA-disease associations by utilizing known miRNA-disease associations and other related information. However, there are some challenges for these computational methods. First, the relationships between miRNAs and diseases are complex. The computational network should consider the local and global influence of neighborhoods from the network. Furthermore, predicting disease-related miRNAs without any known associations is also very important. This study presents a new computational method that constructs a heterogeneous network composed of a miRNA similarity network, disease similarity network, and known miRNA-disease association network. The miRNA similarity considers the miRNAs and their possible families and clusters. The information of each node in heterogeneous network is obtained by aggregating neighborhood information with graph convolutional networks (GCNs), which can pass the information of a node to its intermediate and distant neighbors. Disease-related miRNAs with no known associations can be predicted with the reconstructed heterogeneous matrix. We apply 5-fold cross-validation, leave-one-disease-out cross-validation, and global and local leave-one-out cross-validation to evaluate our method. The corresponding areas under the curves (AUCs) are 0.9616, 0.9946, 0.9656, and 0.9532, confirming that our approach significantly outperforms the state-of-the-art methods. Case studies show that this approach can effectively predict new diseases without any known miRNAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
congyjs完成签到,获得积分10
2秒前
科目三应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
changping应助科研通管家采纳,获得20
4秒前
汉堡包应助温柔海露采纳,获得10
4秒前
lianliyou应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得30
5秒前
Polaris应助科研通管家采纳,获得20
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
满意南霜完成签到 ,获得积分10
6秒前
秦月未完完成签到,获得积分10
6秒前
会魔法的老人完成签到,获得积分10
6秒前
CipherSage应助整齐晓筠采纳,获得10
6秒前
L_Zoe_D02完成签到,获得积分10
8秒前
8秒前
小许会更好完成签到,获得积分10
9秒前
沐风发布了新的文献求助20
9秒前
空白完成签到 ,获得积分10
10秒前
王博士发布了新的文献求助10
13秒前
summitekey完成签到 ,获得积分10
13秒前
奉天逍遥完成签到,获得积分10
14秒前
平淡的秋寒完成签到,获得积分10
16秒前
Maydalian完成签到,获得积分10
17秒前
淡然柚子完成签到,获得积分10
17秒前
17秒前
18秒前
Carrie发布了新的文献求助10
18秒前
18秒前
dyyisash完成签到 ,获得积分10
20秒前
刻苦的长颈鹿完成签到,获得积分10
20秒前
meimei完成签到,获得积分10
22秒前
23秒前
Cc发布了新的文献求助10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306147
求助须知:如何正确求助?哪些是违规求助? 4452011
关于积分的说明 13853601
捐赠科研通 4339475
什么是DOI,文献DOI怎么找? 2382636
邀请新用户注册赠送积分活动 1377583
关于科研通互助平台的介绍 1345190