High-Throughput Rice Density Estimation from Transplantation to Tillering Stages Using Deep Networks

计算机科学 人工智能 均方误差 比例(比率) 特征(语言学) 深度学习 领域(数学) 人工神经网络 平均绝对误差 模式识别(心理学) 机器学习 算法 统计 数学 地图学 哲学 语言学 纯数学 地理
作者
Liang Liu,Hao Lu,Yanan Li,Zhiguo Cao
出处
期刊:Plant phenomics [AAAS00]
卷期号:2020 被引量:18
标识
DOI:10.34133/2020/1375957
摘要

Rice density is closely related to yield estimation, growth diagnosis, cultivated area statistics, and management and damage evaluation. Currently, rice density estimation heavily relies on manual sampling and counting, which is inefficient and inaccurate. With the prevalence of digital imagery, computer vision (CV) technology emerges as a promising alternative to automate this task. However, challenges of an in-field environment, such as illumination, scale, and appearance variations, render gaps for deploying CV methods. To fill these gaps towards accurate rice density estimation, we propose a deep learning-based approach called the Scale-Fusion Counting Classification Network (SFC 2 Net) that integrates several state-of-the-art computer vision ideas. In particular, SFC 2 Net addresses appearance and illumination changes by employing a multicolumn pretrained network and multilayer feature fusion to enhance feature representation. To ameliorate sample imbalance engendered by scale, SFC 2 Net follows a recent blockwise classification idea. We validate SFC 2 Net on a new rice plant counting (RPC) dataset collected from two field sites in China from 2010 to 2013. Experimental results show that SFC 2 Net achieves highly accurate counting performance on the RPC dataset with a mean absolute error (MAE) of 25.51, a root mean square error (MSE) of 38.06, a relative MAE of 3.82%, and a R 2 of 0.98, which exhibits a relative improvement of 48.2% w.r.t. MAE over the conventional counting approach CSRNet. Further, SFC 2 Net provides high-throughput processing capability, with 16.7 frames per second on 1024 × 1024 images. Our results suggest that manual rice counting can be safely replaced by SFC 2 Net at early growth stages. Code and models are available online at https://git.io/sfc2net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
buno给西酞普绿的求助进行了留言
刚刚
出发银河尽头完成签到,获得积分10
2秒前
SciGPT应助123456xq采纳,获得30
3秒前
李健的小迷弟应助maying采纳,获得10
3秒前
veronica发布了新的文献求助10
6秒前
叶天宇完成签到,获得积分10
6秒前
指定能行发布了新的文献求助30
7秒前
淺沫初晴完成签到,获得积分10
10秒前
小羊发布了新的文献求助10
11秒前
13秒前
13秒前
上官若男应助淡淡听寒采纳,获得10
13秒前
喜羊羊大王完成签到,获得积分10
14秒前
14秒前
田様应助真实的以菱采纳,获得10
15秒前
小刘发布了新的文献求助10
15秒前
研友_VZG7GZ应助陆零采纳,获得10
17秒前
17秒前
17秒前
17秒前
19秒前
123456xq发布了新的文献求助30
19秒前
小羊完成签到,获得积分10
19秒前
研友_8DVdzn完成签到,获得积分10
19秒前
洒脱鲲发布了新的文献求助10
20秒前
田様应助The one采纳,获得10
20秒前
深情安青应助雨霁采纳,获得10
21秒前
心随以动发布了新的文献求助150
21秒前
22秒前
23秒前
成就的书包完成签到,获得积分10
25秒前
25秒前
27秒前
ding应助科研通管家采纳,获得100
27秒前
英姑应助科研通管家采纳,获得10
27秒前
科目三应助科研通管家采纳,获得10
27秒前
oceanao应助科研通管家采纳,获得10
27秒前
我是老大应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171046
求助须知:如何正确求助?哪些是违规求助? 2821953
关于积分的说明 7937363
捐赠科研通 2482414
什么是DOI,文献DOI怎么找? 1322504
科研通“疑难数据库(出版商)”最低求助积分说明 633656
版权声明 602627