High-Throughput Rice Density Estimation from Transplantation to Tillering Stages Using Deep Networks

计算机科学 人工智能 均方误差 比例(比率) 特征(语言学) 深度学习 领域(数学) 人工神经网络 平均绝对误差 模式识别(心理学) 机器学习 算法 统计 数学 地图学 哲学 语言学 纯数学 地理
作者
Liang Liu,Hao Lu,Yanan Li,Zhiguo Cao
出处
期刊:Plant phenomics [American Association for the Advancement of Science]
卷期号:2020 被引量:18
标识
DOI:10.34133/2020/1375957
摘要

Rice density is closely related to yield estimation, growth diagnosis, cultivated area statistics, and management and damage evaluation. Currently, rice density estimation heavily relies on manual sampling and counting, which is inefficient and inaccurate. With the prevalence of digital imagery, computer vision (CV) technology emerges as a promising alternative to automate this task. However, challenges of an in-field environment, such as illumination, scale, and appearance variations, render gaps for deploying CV methods. To fill these gaps towards accurate rice density estimation, we propose a deep learning-based approach called the Scale-Fusion Counting Classification Network (SFC 2 Net) that integrates several state-of-the-art computer vision ideas. In particular, SFC 2 Net addresses appearance and illumination changes by employing a multicolumn pretrained network and multilayer feature fusion to enhance feature representation. To ameliorate sample imbalance engendered by scale, SFC 2 Net follows a recent blockwise classification idea. We validate SFC 2 Net on a new rice plant counting (RPC) dataset collected from two field sites in China from 2010 to 2013. Experimental results show that SFC 2 Net achieves highly accurate counting performance on the RPC dataset with a mean absolute error (MAE) of 25.51, a root mean square error (MSE) of 38.06, a relative MAE of 3.82%, and a R 2 of 0.98, which exhibits a relative improvement of 48.2% w.r.t. MAE over the conventional counting approach CSRNet. Further, SFC 2 Net provides high-throughput processing capability, with 16.7 frames per second on 1024 × 1024 images. Our results suggest that manual rice counting can be safely replaced by SFC 2 Net at early growth stages. Code and models are available online at https://git.io/sfc2net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
正常发布了新的文献求助10
刚刚
小桃子完成签到 ,获得积分10
刚刚
33发布了新的文献求助20
刚刚
赘婿应助一彤展翅采纳,获得30
1秒前
明理友琴完成签到,获得积分10
2秒前
yyf发布了新的文献求助10
3秒前
3秒前
惠聪儿发布了新的文献求助10
3秒前
共享精神应助严小之采纳,获得10
4秒前
sweet完成签到,获得积分10
5秒前
洛苏发布了新的文献求助10
5秒前
活泼的磬发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
小溪苏完成签到 ,获得积分10
8秒前
童diedie完成签到,获得积分10
8秒前
10秒前
10秒前
华仔应助gu123采纳,获得10
11秒前
秀秀发布了新的文献求助10
11秒前
何hh发布了新的文献求助10
12秒前
aqiang123123完成签到,获得积分10
12秒前
消月明完成签到 ,获得积分10
12秒前
Silone发布了新的文献求助10
13秒前
大模型应助大力的一江采纳,获得10
14秒前
33完成签到,获得积分10
14秒前
科研通AI2S应助潇潇雨歇采纳,获得10
15秒前
15秒前
腾茹煊发布了新的文献求助10
16秒前
16秒前
liningcen发布了新的文献求助10
16秒前
卷aaaa发布了新的文献求助10
16秒前
17秒前
完美世界应助33采纳,获得10
18秒前
Yygz314完成签到,获得积分10
18秒前
liu关注了科研通微信公众号
19秒前
正常完成签到,获得积分20
20秒前
小白完成签到 ,获得积分10
20秒前
苹果完成签到,获得积分10
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125149
求助须知:如何正确求助?哪些是违规求助? 4329133
关于积分的说明 13490086
捐赠科研通 4163894
什么是DOI,文献DOI怎么找? 2282628
邀请新用户注册赠送积分活动 1283777
关于科研通互助平台的介绍 1223019