High-Throughput Rice Density Estimation from Transplantation to Tillering Stages Using Deep Networks

计算机科学 人工智能 均方误差 比例(比率) 特征(语言学) 深度学习 领域(数学) 人工神经网络 平均绝对误差 模式识别(心理学) 机器学习 算法 统计 数学 地图学 哲学 语言学 纯数学 地理
作者
Liang Liu,Hao Lu,Yanan Li,Zhiguo Cao
出处
期刊:Plant phenomics [AAAS00]
卷期号:2020 被引量:18
标识
DOI:10.34133/2020/1375957
摘要

Rice density is closely related to yield estimation, growth diagnosis, cultivated area statistics, and management and damage evaluation. Currently, rice density estimation heavily relies on manual sampling and counting, which is inefficient and inaccurate. With the prevalence of digital imagery, computer vision (CV) technology emerges as a promising alternative to automate this task. However, challenges of an in-field environment, such as illumination, scale, and appearance variations, render gaps for deploying CV methods. To fill these gaps towards accurate rice density estimation, we propose a deep learning-based approach called the Scale-Fusion Counting Classification Network (SFC 2 Net) that integrates several state-of-the-art computer vision ideas. In particular, SFC 2 Net addresses appearance and illumination changes by employing a multicolumn pretrained network and multilayer feature fusion to enhance feature representation. To ameliorate sample imbalance engendered by scale, SFC 2 Net follows a recent blockwise classification idea. We validate SFC 2 Net on a new rice plant counting (RPC) dataset collected from two field sites in China from 2010 to 2013. Experimental results show that SFC 2 Net achieves highly accurate counting performance on the RPC dataset with a mean absolute error (MAE) of 25.51, a root mean square error (MSE) of 38.06, a relative MAE of 3.82%, and a R 2 of 0.98, which exhibits a relative improvement of 48.2% w.r.t. MAE over the conventional counting approach CSRNet. Further, SFC 2 Net provides high-throughput processing capability, with 16.7 frames per second on 1024 × 1024 images. Our results suggest that manual rice counting can be safely replaced by SFC 2 Net at early growth stages. Code and models are available online at https://git.io/sfc2net .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Double完成签到 ,获得积分10
刚刚
科研通AI6应助不安的凡桃采纳,获得10
刚刚
Owen应助棕榈采纳,获得10
2秒前
Sakurasamada发布了新的文献求助20
2秒前
2秒前
白羊完成签到,获得积分10
3秒前
3秒前
薛之谦的猫应助任性白秋采纳,获得10
3秒前
向日葵完成签到 ,获得积分10
3秒前
Lee完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
Lee发布了新的文献求助10
7秒前
7秒前
潇洒毛给潇洒毛的求助进行了留言
8秒前
颖火虫2588发布了新的文献求助10
8秒前
9秒前
小冯发布了新的文献求助10
10秒前
10秒前
Sandjames1889发布了新的文献求助10
10秒前
lqhccww发布了新的文献求助10
11秒前
深情安青应助chongmu采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
LYZ完成签到,获得积分10
14秒前
小毛完成签到,获得积分20
14秒前
14秒前
14秒前
长情宛儿发布了新的文献求助10
14秒前
15秒前
Mlwwq发布了新的文献求助10
15秒前
Liu完成签到 ,获得积分10
16秒前
bibi发布了新的文献求助10
16秒前
清醒且开心完成签到,获得积分10
17秒前
康娜完成签到,获得积分10
17秒前
17秒前
puzhongjiMiQ发布了新的文献求助10
18秒前
NexusExplorer应助木易北北采纳,获得10
19秒前
pluto应助祖老头采纳,获得10
21秒前
英姑应助祖老头采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594501
求助须知:如何正确求助?哪些是违规求助? 4680157
关于积分的说明 14813307
捐赠科研通 4647283
什么是DOI,文献DOI怎么找? 2534960
邀请新用户注册赠送积分活动 1503016
关于科研通互助平台的介绍 1469521