钙钛矿(结构)
维数之咒
碘化物
八面体
化学物理
分子动力学
材料科学
结晶学
化学
纳米技术
计算化学
计算机科学
无机化学
晶体结构
机器学习
作者
Magnus B. Fridriksson,Sudeep Maheshwari,Ferdinand C. Grozema
标识
DOI:10.1021/acs.jpcc.0c05225
摘要
Recently two-dimensional (2D) hybrid organic-inorganic perovskites have attracted a lot of interest as more stable analogues of their three-dimensional counterparts for optoelectronic applications. However, a thorough understanding of the effect that this reduced dimensionality has on dynamical and structural behavior of individual parts of the perovskite is currently lacking. We have used molecular dynamics simulations to investigate the structure and dynamics of 2D Ruddlesden-Popper perovskite with the general formula BA2MA n-1Pb n I3n+1, where BA is butylammonium, MA is methylammonium, and n is the number of lead-iodide layers. We discuss the dynamic behavior of both the inorganic and the organic part and compare between the different 2D structures. We show that the rigidness of the inorganic layer markedly increases with the number of lead-iodide layers and that low-temperature structural phase changes accompanied by tilting of the octahedra occurs in some but not all structures. Furthermore, the dynamic behavior of the MA ion is significantly affected by the number of inorganic layers, involving changes both in the reorientation times and in the occurrence of specific preferred orientations.
科研通智能强力驱动
Strongly Powered by AbleSci AI