Time-varying fault feature extraction of rolling bearing via time–frequency sparsity

短时傅里叶变换 时频表示法 时频分析 计算机科学 频域 傅里叶变换 凸性 时域 算法 断层(地质) 数学 控制理论(社会学) 数学优化 人工智能 傅里叶分析 数学分析 地质学 金融经济学 经济 地震学 电信 计算机视觉 雷达 控制(管理)
作者
Cancan Yi,Jiaqi Qin,Tao Huang,Jin Zhangmin
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:32 (2): 025116-025116 被引量:4
标识
DOI:10.1088/1361-6501/abb50f
摘要

Abstract The joint time–frequency (TF) distribution is a critical method of describing the instantaneous frequency that changes with time. To eliminate the errors caused by strong modulation and noise interference in the process of time-varying fault feature extraction, this paper proposes a novel approach called second-order time–frequency sparse representation (SOTFSR), which is based on convex optimization in the domain of second-order short-time Fourier transform (SOSTFT) where the TF feature manifests itself as a relative sparsity. According to the second-order local estimation of the phase function, SOSTFT can provide a sparse TF coefficient in the short-time Fourier transform (STFT) domain. To obtain the optimal TF coefficient matrix from noisy observations, it is innovatively formulated as a typical convex optimization problem. Subsequently, a multivariate generalized minimax concave penalty is employed to maintain the convexity of the least-squares cost function to be minimized. The aim of the proposed SOTFSR is to obtain the optimal STFT coefficient in the TF domain for extraction of time-varying features and for perfect signal reconstruction. To verify the superiority of the proposed method, we collect the multi-component simulation signals and the signals under variable speed from a rolling bearing with an inner ring fault. The experimental results show that the proposed method can effectively extract the time-varying fault characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助坚强夜白采纳,获得10
刚刚
1秒前
3秒前
燊yy发布了新的文献求助20
4秒前
科目三应助乾乾采纳,获得10
4秒前
斯文墨镜发布了新的文献求助10
4秒前
tangping发布了新的文献求助10
4秒前
平淡化蛹发布了新的文献求助10
5秒前
6秒前
ding应助无尘采纳,获得10
6秒前
殷勤的桐完成签到,获得积分10
9秒前
hsing发布了新的文献求助10
9秒前
10秒前
yin发布了新的文献求助10
10秒前
11秒前
WWlifeT发布了新的文献求助10
11秒前
DONGDONG发布了新的文献求助10
12秒前
orixero应助艳艳子采纳,获得10
12秒前
dyfsj发布了新的文献求助10
13秒前
俭朴依白完成签到,获得积分10
14秒前
14秒前
李键刚完成签到 ,获得积分10
15秒前
乾乾发布了新的文献求助10
16秒前
16秒前
流砂完成签到,获得积分10
18秒前
DONGDONG完成签到,获得积分10
20秒前
20秒前
guoll发布了新的文献求助10
21秒前
OP发布了新的文献求助10
23秒前
23秒前
桐桐应助冷静荠采纳,获得10
24秒前
Tan_yp完成签到,获得积分10
24秒前
vetXue完成签到,获得积分10
25秒前
领导范儿应助吴一一采纳,获得10
25秒前
遥远的尧应助努力的咩咩采纳,获得10
25秒前
JamesPei应助xiuxiuzhang采纳,获得10
26秒前
蓦然回首完成签到,获得积分10
27秒前
28秒前
29秒前
犊子完成签到,获得积分10
29秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158017
求助须知:如何正确求助?哪些是违规求助? 2809393
关于积分的说明 7881798
捐赠科研通 2467878
什么是DOI,文献DOI怎么找? 1313757
科研通“疑难数据库(出版商)”最低求助积分说明 630522
版权声明 601943