亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Soft Spatial Attention-Based Multimodal Driver Action Recognition Using Deep Learning

计算机科学 人工智能 RGB颜色模型 过程(计算) 帧(网络) 轮廓 计算机视觉 任务(项目管理) 深度学习 高级驾驶员辅助系统 工程类 电信 操作系统 系统工程
作者
Imen Jegham,Anouar Ben Khalifa,Ihsen Alouani,Mohamed Ali Mahjoub
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (2): 1918-1925 被引量:40
标识
DOI:10.1109/jsen.2020.3019258
摘要

Driver behaviors and decisions are crucial factors for on-road driving safety. With a precise driver behavior monitoring system, traffic accidents and injuries can be significantly reduced. However, understanding human behaviors in real-world driving settings is a challenging task because of the uncontrolled conditions including illumination variation, occlusion, and dynamic and cluttered background. In this paper, a Kinect sensor, which provides multimodal signals, is adopted as a driver monitoring sensor to recognize safe driving and common secondary most distracting in-vehicle actions. We propose a novel soft spatial attention-based network named the Depth-based Spatial Attention network (DSA), which adds a cognitive process to deep network by selectively focusing on the driver's silhouette and motion in the cluttered driving scene. In fact, at each time t, we introduce a new weighted RGB frame based on an attention model designed using a depth frame. The final classification accuracy is substantially enhanced compared to the state-of-the-art results with an achieved improvement of up to 27%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
9秒前
发条完成签到,获得积分10
10秒前
11秒前
12秒前
ghnt完成签到,获得积分10
14秒前
15秒前
从光远完成签到 ,获得积分10
16秒前
18秒前
852应助DDMouse采纳,获得10
19秒前
24秒前
XXXXXX发布了新的文献求助10
24秒前
ghnt发布了新的文献求助10
27秒前
29秒前
31秒前
32秒前
朝槿完成签到,获得积分10
33秒前
朝槿发布了新的文献求助10
37秒前
小白果果发布了新的文献求助10
38秒前
38秒前
Apple1234发布了新的文献求助30
41秒前
李健的小迷弟应助Emma采纳,获得10
43秒前
Moo5_zzZ发布了新的文献求助30
43秒前
44秒前
45秒前
落落洛栖完成签到 ,获得积分10
45秒前
彭于晏应助豆kl采纳,获得10
46秒前
传奇3应助小白果果采纳,获得10
47秒前
48秒前
dadadsad完成签到,获得积分10
48秒前
ding应助落寞的藏今采纳,获得10
48秒前
香蕉觅云应助Apple1234采纳,获得10
51秒前
52秒前
fourcewill完成签到,获得积分20
55秒前
1分钟前
超人爱吃菠菜完成签到,获得积分10
1分钟前
1分钟前
1分钟前
天海发布了新的文献求助10
1分钟前
DDMouse发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543029
求助须知:如何正确求助?哪些是违规求助? 4629142
关于积分的说明 14610941
捐赠科研通 4570445
什么是DOI,文献DOI怎么找? 2505771
邀请新用户注册赠送积分活动 1483063
关于科研通互助平台的介绍 1454364