超级电容器
电化学
材料科学
电极
电容
蜂巢
化学工程
形态学(生物学)
电解质
循环伏安法
纳米技术
镍
扫描电子显微镜
电流密度
水平扫描速率
复合材料
化学
物理化学
工程类
生物
遗传学
作者
Xiao Li,Jun Li,Ying Zhang,Peng Zhao,Ruyan Lei,Baige Yuan,Manman Xia
出处
期刊:Materials
[MDPI AG]
日期:2020-10-30
卷期号:13 (21): 4870-4870
被引量:11
摘要
Ni(OH)2 derived from an MOF template was synthesized as an electrode material for supercapacitors. The electrochemical performance of the electrode was adjusted by effectively regulating the morphology of Ni(OH)2. The evolution of electrochemical performance of the electrode with morphology of Ni(OH)2 was highlighted in detail, based on which honeycomb-like Ni(OH)2 was successfully synthesized, and endowed the electrode with outstanding electrochemical performance. For the three-electrode testing system, honeycomb-like Ni(OH)2 exhibited a very high specific capacitance (1865 F·g−1 at 1 A·g−1, 1550 F·g−1 at 5 mV·s−1). Moreover, it also presented an excellent rate capability and cycling stability, due to 59.46 % of the initial value (1 A·g−1) being retained at 10 A·g−1, and 172% of initial value (first circle at 50 mV·s−1) being retained after 20,000 cycles. With respect to the assembled hybrid supercapacitor, honeycomb-like Ni(OH)2 also displayed superior electrochemical performance, with a high energy density (83.9 Wh·kg−1 at a power density of 374.8 W·kg−1). The outstanding electrochemical performance of Ni(OH)2 should be attributed to its unique honeycomb-like structure, with a very high specific surface area, which greatly accelerates the transformation and diffusion of active ions.
科研通智能强力驱动
Strongly Powered by AbleSci AI